Glioblastoma(GBM)is the most aggressive malignant brain tumour,with a median survival of 3 months without treatment and 15 months with treatment.Early GBM diagnosis can significantly improve patient survival due to ea...Glioblastoma(GBM)is the most aggressive malignant brain tumour,with a median survival of 3 months without treatment and 15 months with treatment.Early GBM diagnosis can significantly improve patient survival due to early treatment and management procedures.Magnetic resonance imaging(MRI)using contrast agents is the preferred method for the preoperative detection of GBM tumours.However,commercially available clinical contrast agents do not accurately distinguish between GBM,surrounding normal tissue and other cancer types due to their limited ability to cross the blood-brain barrier,their low relaxivity and their potential toxicity.New GBM-specific contrast agents are urgently needed to overcome the limitations of current contrast agents.Recent advances in nanotechnology have produced alternative GBM-targeting contrast agents.The surfaces of nanoparticles(NPs)can be modified with multimodal contrast imaging agents and ligands that can specifically enhance the accumulation of NPs at GBM sites.Using advanced imaging technology,multimodal NP-based contrast agents have been used to obtain accurate GBM diagnoses in addition to an increased amount of clinical diagnostic information.NPs can also serve as drug delivery systems for GBM treatments.This review focuses on the research progress for GBMtargeting MRI contrast agents as well as MRI-guided GBM therapy.展开更多
基金supported by the Natural Science Foundation of China(Grant No.81501462,22075281)the Chengdu International Science and Technology Cooperation Funding(Grant No.2019-GH02-00074-HZ)+4 种基金the 135 project for disciplines of Excellence-Clinical Research Incubation Project,West China Hospital,Sichuan Universitythe Scientific and technological Achievements Transformation Fund of West China Hospital,Sichuan University(Grant No.CGZH21002)the Functional and Molecular Imaging Key Laboratory of Sichuan Province(Grant No.2012JO0011)Zhejiang Provincial Natural Science of Foundation of China(LZ21B010001)University of Chinese Academy of Science(WIUCASQD2020008).
文摘Glioblastoma(GBM)is the most aggressive malignant brain tumour,with a median survival of 3 months without treatment and 15 months with treatment.Early GBM diagnosis can significantly improve patient survival due to early treatment and management procedures.Magnetic resonance imaging(MRI)using contrast agents is the preferred method for the preoperative detection of GBM tumours.However,commercially available clinical contrast agents do not accurately distinguish between GBM,surrounding normal tissue and other cancer types due to their limited ability to cross the blood-brain barrier,their low relaxivity and their potential toxicity.New GBM-specific contrast agents are urgently needed to overcome the limitations of current contrast agents.Recent advances in nanotechnology have produced alternative GBM-targeting contrast agents.The surfaces of nanoparticles(NPs)can be modified with multimodal contrast imaging agents and ligands that can specifically enhance the accumulation of NPs at GBM sites.Using advanced imaging technology,multimodal NP-based contrast agents have been used to obtain accurate GBM diagnoses in addition to an increased amount of clinical diagnostic information.NPs can also serve as drug delivery systems for GBM treatments.This review focuses on the research progress for GBMtargeting MRI contrast agents as well as MRI-guided GBM therapy.