Dim target detection from sea clutter is one of the difficult topics in ocean remote sensing application. By aiming at the shortcoming of false alarms when using track before detect (TBD) based on dynamic programmin...Dim target detection from sea clutter is one of the difficult topics in ocean remote sensing application. By aiming at the shortcoming of false alarms when using track before detect (TBD) based on dynamic programming, a new discrimination method called statistics of direction histogram (SDH) is proposed, which is based on different features of trajectories between the true target and false one. Moreover, a new series of discrimination schemes of SDH and Local Extreme Value method (LEV) are studied and applied to simulate the actually measured radar data. The results show that the given discrimination is effective to reduce false alarms during dim targets detection.展开更多
Ship detection using synthetic aperture radar(SAR)plays an important role in marine applications.The existing methods are capable of quickly obtaining many candidate targets,but numerous non-ship objects may be wrongl...Ship detection using synthetic aperture radar(SAR)plays an important role in marine applications.The existing methods are capable of quickly obtaining many candidate targets,but numerous non-ship objects may be wrongly detected in complex backgrounds.These non-ship false alarms can be excluded by training discriminators,and the desired accuracy is obtained with enough verified samples.However,the reliable verification of targets in large-scene SAR images still inevitably requires manual interpretation,which is difficult and time consuming.To address this issue,a semisupervised heterogeneous ensemble ship target discrimination method based on a tri-training scheme is proposed to take advantage of the plentiful candidate targets.Specifically,various features commonly used in SAR image target discrimination are extracted,and several acknowledged classification models and their classic variants are investigated.Multiple discriminators are constructed by dividing these features into different groups and pairing them with each model.Then,the performance of all the discriminators is tested,and better discriminators are selected for implementing the semisupervised training process.These strategies enhance the diversity and reliability of the discriminators,and their heterogeneous ensemble makes more correct judgments on candidate targets,which facilitates further positive training.Experimental results demonstrate that the proposed method outperforms traditional tritraining.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61001137)the Pre-Research Foundation(Grant No.9140A07020311HK0116)
文摘Dim target detection from sea clutter is one of the difficult topics in ocean remote sensing application. By aiming at the shortcoming of false alarms when using track before detect (TBD) based on dynamic programming, a new discrimination method called statistics of direction histogram (SDH) is proposed, which is based on different features of trajectories between the true target and false one. Moreover, a new series of discrimination schemes of SDH and Local Extreme Value method (LEV) are studied and applied to simulate the actually measured radar data. The results show that the given discrimination is effective to reduce false alarms during dim targets detection.
基金The National Natural Science Foundation of China under contract No.61971455.
文摘Ship detection using synthetic aperture radar(SAR)plays an important role in marine applications.The existing methods are capable of quickly obtaining many candidate targets,but numerous non-ship objects may be wrongly detected in complex backgrounds.These non-ship false alarms can be excluded by training discriminators,and the desired accuracy is obtained with enough verified samples.However,the reliable verification of targets in large-scene SAR images still inevitably requires manual interpretation,which is difficult and time consuming.To address this issue,a semisupervised heterogeneous ensemble ship target discrimination method based on a tri-training scheme is proposed to take advantage of the plentiful candidate targets.Specifically,various features commonly used in SAR image target discrimination are extracted,and several acknowledged classification models and their classic variants are investigated.Multiple discriminators are constructed by dividing these features into different groups and pairing them with each model.Then,the performance of all the discriminators is tested,and better discriminators are selected for implementing the semisupervised training process.These strategies enhance the diversity and reliability of the discriminators,and their heterogeneous ensemble makes more correct judgments on candidate targets,which facilitates further positive training.Experimental results demonstrate that the proposed method outperforms traditional tritraining.