期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Joint target assignment and power allocation in the netted C-MIMO radar when tracking multi-targets in the presence of self-defense blanket jamming
1
作者 Zhengjie Li Junwei Xie +1 位作者 Haowei Zhang Jiahao Xie 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期414-427,共14页
The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In t... The netted radar system(NRS)has been proved to possess unique advantages in anti-jamming and improving target tracking performance.Effective resource management can greatly ensure the combat capability of the NRS.In this paper,based on the netted collocated multiple input multiple output(CMIMO)radar,an effective joint target assignment and power allocation(JTAPA)strategy for tracking multi-targets under self-defense blanket jamming is proposed.An architecture based on the distributed fusion is used in the radar network to estimate target state parameters.By deriving the predicted conditional Cramer-Rao lower bound(PC-CRLB)based on the obtained state estimation information,the objective function is formulated.To maximize the worst case tracking accuracy,the proposed JTAPA strategy implements an online target assignment and power allocation of all active nodes,subject to some resource constraints.Since the formulated JTAPA is non-convex,we propose an efficient two-step solution strategy.In terms of the simulation results,the proposed algorithm can effectively improve tracking performance in the worst case. 展开更多
关键词 Netted radar system MIMO Target assignment Power allocation Multi-targets tracking Self-defense blanket jamming
下载PDF
An Air Defense Weapon Target Assignment Method Based on Multi-Objective Artificial Bee Colony Algorithm 被引量:1
2
作者 Huaixi Xing Qinghua Xing 《Computers, Materials & Continua》 SCIE EI 2023年第9期2685-2705,共21页
With the advancement of combat equipment technology and combat concepts,new requirements have been put forward for air defense operations during a group target attack.To achieve high-efficiency and lowloss defensive o... With the advancement of combat equipment technology and combat concepts,new requirements have been put forward for air defense operations during a group target attack.To achieve high-efficiency and lowloss defensive operations,a reasonable air defense weapon assignment strategy is a key step.In this paper,a multi-objective and multi-constraints weapon target assignment(WTA)model is established that aims to minimize the defensive resource loss,minimize total weapon consumption,and minimize the target residual effectiveness.An optimization framework of air defense weapon mission scheduling based on the multiobjective artificial bee colony(MOABC)algorithm is proposed.The solution for point-to-point saturated attack targets at different operational scales is achieved by encoding the nectar with real numbers.Simulations are performed for an imagined air defense scenario,where air defense weapons are saturated.The non-dominated solution sets are obtained by the MOABC algorithm to meet the operational demand.In the case where there are more weapons than targets,more diverse assignment schemes can be selected.According to the inverse generation distance(IGD)index,the convergence and diversity for the solutions of the non-dominated sorting genetic algorithm III(NSGA-III)algorithm and the MOABC algorithm are compared and analyzed.The results prove that the MOABC algorithm has better convergence and the solutions are more evenly distributed among the solution space. 展开更多
关键词 Weapon target assignment multi-objective artificial bee colony air defense defensive resource loss total weapon consumption target residual effectiveness
下载PDF
Weapon target assignment problem satisfying expected damage probabilities based on ant colony algorithm 被引量:26
3
作者 Wang Yanxia Qian Longjun Guo Zhi Ma Lifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期939-944,共6页
A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the we... A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example. 展开更多
关键词 weapon target assignment ant colony algorithm optimization.
下载PDF
Dynamic Weapon Target Assignment Based on Intuitionistic Fuzzy Entropy of Discrete Particle Swarm 被引量:17
4
作者 Yi Wang Jin Li +1 位作者 Wenlong Huang Tong Wen 《China Communications》 SCIE CSCD 2017年第1期169-179,共11页
Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzz... Aiming at the problems of convergence-slow and convergence-free of Discrete Particle Swarm Optimization Algorithm(DPSO) in solving large scale or complicated discrete problem, this article proposes Intuitionistic Fuzzy Entropy of Discrete Particle Swarm Optimization(IFDPSO) and makes it applied to Dynamic Weapon Target Assignment(WTA). First, the strategy of choosing intuitionistic fuzzy parameters of particle swarm is defined, making intuitionistic fuzzy entropy as a basic parameter for measure and velocity mutation. Second, through analyzing the defects of DPSO, an adjusting parameter for balancing two cognition, velocity mutation mechanism and position mutation strategy are designed, and then two sets of improved and derivative algorithms for IFDPSO are put forward, which ensures the IFDPSO possibly search as much as possible sub-optimal positions and its neighborhood and the algorithm ability of searching global optimal value in solving large scale 0-1 knapsack problem is intensified. Third, focusing on the problem of WTA, some parameters including dynamic parameter for shifting firepower and constraints are designed to solve the problems of weapon target assignment. In addition, WTA Optimization Model with time and resource constraints is finally set up, which also intensifies the algorithm ability of searching global and local best value in the solution of WTA problem. Finally, the superiority of IFDPSO is proved by several simulation experiments. Particularly, IFDPSO, IFDPSO1~IFDPSO3 are respectively effective in solving large scale, medium scale or strict constraint problems such as 0-1 knapsack problem and WTA problem. 展开更多
关键词 intuitionistic fuzzy entropy discrete particle swarm optimization algorithm 0-1 knapsack problem weapon target assignment
下载PDF
Approach to WTA in air combat using IAFSA-IHS algorithm 被引量:11
5
作者 LI Zhanwu CHANG Yizhe +3 位作者 KOU Yingxin YANG Haiyan XU An LI You 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期519-529,共11页
In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, ... In this paper, a static weapon target assignment(WTA)problem is studied. As a critical problem in cooperative air combat,outcome of WTA directly influences the battle. Along with the cost of weapons rising rapidly, it is indispensable to design a target assignment model that can ensure minimizing targets survivability and weapons consumption simultaneously. Afterwards an algorithm named as improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) is proposed to solve the problem. The effect of the proposed algorithm is demonstrated in numerical simulations, and results show that it performs positively in searching the optimal solution and solving the WTA problem. 展开更多
关键词 air combat weapon target assignment improved artificial fish swarm algorithm-improved harmony search algorithm(IAFSA-IHS) artificial fish swarm algorithm(AFSA) harmony search(HS)
下载PDF
Solving algorithm for TA optimization model based on ACO-SA 被引量:4
6
作者 Jun Wang Xiaoguang Gao Yongwen Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期628-639,共12页
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi... An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat. 展开更多
关键词 target assignment (TA) OPTIMIZATION ant colony optimization (ACO) algorithm simulated annealing (SA) algorithm hybrid optimization strategy.
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部