Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seaw...Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seawater or lake water, but rather as a coupling result of particular provenance, tectonics and climate activities. In this paper, we focus on the formative mechanism of the potash deposits of Lop Nur depression in Tarim Basin to interpret the detailed coupling mechanism among provenance, tectonics and climate. In terms of the provenance of Lop Nur Lake, the water of the Tarim River which displays "potassium-rich" characteristics play an important role. In addition, the Pliocene and Lower-Middle Pleistocene clastic beds surrounding Lop Nur Lake host a certain amount of soluble potassium and thus serves as "source beds" for potash formation. During the late Pliocene, the Lop Nur region has declined and evolved into a great lake from the previous piedmont and diluvial fan area. Since the mid Pleistocene, the great-united Lop Nur Lake has been separated and has generated a chain system consisting of Taitema Lake, Big Ear Lake and Luobei Lake which has turned into the deepest sag in Lop Nur Lake. Dry climate in Lop Nur region has increased since the Pliocene, and became extreme at the late Pleistocene. The study implies that potash formation in Lop Nur Lake depends on the optimal combination of extreme components of provenance, tectonics and climate during a shorter-term period. The optimal patterns of three factors are generally characterized by the long-term accumulation and preliminary enrichment of potassium, the occurrence of the deepest sub-depression and the appearance of an extremely arid climate in Lop Nur region. These factors have been interacting synergistically since the forming of the saline lake and in the later stages strong "vapor extraction" caused by extremely arid climate is needed to trigger large scale mineralization of potash deposits.展开更多
A portable 3-component broadband digital seismic array was deployed across the Tianshan orogenic belt (TOB) to investigate the lithospheric structure. Based on receiver function analysis of the teleseismic P-wave data...A portable 3-component broadband digital seismic array was deployed across the Tianshan orogenic belt (TOB) to investigate the lithospheric structure. Based on receiver function analysis of the teleseismic P-wave data, a 2-D S-wave velocity profile of the boundary area of the TOB and the Tarim Basin was obtained at the depths of 0—80 km. Our results reveal a vertical and lateral inhomogeneity in the crust and uppermost mantle. Four velocity interfaces divide the crystalline crust into the upper, middle and lower crust. A low velocity zone is widely observed in the upper-middle crust. The depth of Moho varies between 42 and 52 km. At the north end of the profile the Moho dips northward with a vertical offset of 4—6 km, which implies a subduction front of the Tarim Basin into the TOB. The Moho generally ap- pears as a velocity transitional zone except beneath two sta- tions in the northern Tarim Basin, where the Moho is char- acterized by a typical velocity discontinuity. The fine velocity structure and the deep contact deformation of the crust and upper most mantle delineate the north-south lithospheric shortening and thickening in the boundary area of the TOB and the Tarim Basin, which would be helpful to constructing the geodynamical model of the intracontinental moun- tain-basin-coupling system.展开更多
Attention has been paid to the deformations in the south and north foreland basins of the Tianshan Mountains and their relations to the tectonic movements of the mountains. Based on the seismic data interpretation and...Attention has been paid to the deformations in the south and north foreland basins of the Tianshan Mountains and their relations to the tectonic movements of the mountains. Based on the seismic data interpretation and field work,the tectonic features,tectonic styles,controlling factors of deformation,deformation time,and their relationships in the three tectonic units were comparably studied. The Ce-nozoic deformations in the two foreland basins were characterized by zonation from south to north,segmentation from west to east,and layering from deep to shallow. The tectonic styles are compres-sive ones,including both basement-involved and cover-detaching. The two foreland basins underwent several times of deformation in Cenozoic and the deformations were transmitted from the Tianshan orogen to the inner basin. The deformation dynamics of the south and north foreland basins of the Tianshan Mountains can be represented by dynamics of orogenic wedges. In terms of the deformations of the wedges with wave-like features,the concept of a wave orogenic wedge was put forward,and a double wave orogenic wedge model was established.展开更多
基金funded by the National Basic Research Program of China(No.2011CB403007)the State Key Program of National Natural Science of China(No.40830420)
文摘Potash deposits commonly accumulate in highly restricted settings at the final stage of brine evaporation. This does not mean that potash deposits are formed simply as a result of the evaporation concentration of seawater or lake water, but rather as a coupling result of particular provenance, tectonics and climate activities. In this paper, we focus on the formative mechanism of the potash deposits of Lop Nur depression in Tarim Basin to interpret the detailed coupling mechanism among provenance, tectonics and climate. In terms of the provenance of Lop Nur Lake, the water of the Tarim River which displays "potassium-rich" characteristics play an important role. In addition, the Pliocene and Lower-Middle Pleistocene clastic beds surrounding Lop Nur Lake host a certain amount of soluble potassium and thus serves as "source beds" for potash formation. During the late Pliocene, the Lop Nur region has declined and evolved into a great lake from the previous piedmont and diluvial fan area. Since the mid Pleistocene, the great-united Lop Nur Lake has been separated and has generated a chain system consisting of Taitema Lake, Big Ear Lake and Luobei Lake which has turned into the deepest sag in Lop Nur Lake. Dry climate in Lop Nur region has increased since the Pliocene, and became extreme at the late Pleistocene. The study implies that potash formation in Lop Nur Lake depends on the optimal combination of extreme components of provenance, tectonics and climate during a shorter-term period. The optimal patterns of three factors are generally characterized by the long-term accumulation and preliminary enrichment of potassium, the occurrence of the deepest sub-depression and the appearance of an extremely arid climate in Lop Nur region. These factors have been interacting synergistically since the forming of the saline lake and in the later stages strong "vapor extraction" caused by extremely arid climate is needed to trigger large scale mineralization of potash deposits.
基金This work was supported by the National Natural Science Foundation of China(Grant No.40072066)the Technological Innovation Foundation of Lanzhou Institute of Geology,Chinese Academy of Sciences(Grant No.03-12).
文摘A portable 3-component broadband digital seismic array was deployed across the Tianshan orogenic belt (TOB) to investigate the lithospheric structure. Based on receiver function analysis of the teleseismic P-wave data, a 2-D S-wave velocity profile of the boundary area of the TOB and the Tarim Basin was obtained at the depths of 0—80 km. Our results reveal a vertical and lateral inhomogeneity in the crust and uppermost mantle. Four velocity interfaces divide the crystalline crust into the upper, middle and lower crust. A low velocity zone is widely observed in the upper-middle crust. The depth of Moho varies between 42 and 52 km. At the north end of the profile the Moho dips northward with a vertical offset of 4—6 km, which implies a subduction front of the Tarim Basin into the TOB. The Moho generally ap- pears as a velocity transitional zone except beneath two sta- tions in the northern Tarim Basin, where the Moho is char- acterized by a typical velocity discontinuity. The fine velocity structure and the deep contact deformation of the crust and upper most mantle delineate the north-south lithospheric shortening and thickening in the boundary area of the TOB and the Tarim Basin, which would be helpful to constructing the geodynamical model of the intracontinental moun- tain-basin-coupling system.
基金Supported by National Natural Science Foundation of China (Grant Nos.40672143 and 40472107)
文摘Attention has been paid to the deformations in the south and north foreland basins of the Tianshan Mountains and their relations to the tectonic movements of the mountains. Based on the seismic data interpretation and field work,the tectonic features,tectonic styles,controlling factors of deformation,deformation time,and their relationships in the three tectonic units were comparably studied. The Ce-nozoic deformations in the two foreland basins were characterized by zonation from south to north,segmentation from west to east,and layering from deep to shallow. The tectonic styles are compres-sive ones,including both basement-involved and cover-detaching. The two foreland basins underwent several times of deformation in Cenozoic and the deformations were transmitted from the Tianshan orogen to the inner basin. The deformation dynamics of the south and north foreland basins of the Tianshan Mountains can be represented by dynamics of orogenic wedges. In terms of the deformations of the wedges with wave-like features,the concept of a wave orogenic wedge was put forward,and a double wave orogenic wedge model was established.