In this paper, the human immunodeficiency virus (HIV) infection model of CD4+ T-cells is considered. In order to numerically solve the model problem, an operational method is proposed. For that purpose, we construc...In this paper, the human immunodeficiency virus (HIV) infection model of CD4+ T-cells is considered. In order to numerically solve the model problem, an operational method is proposed. For that purpose, we construct the operational matrix of integration for bases of Taylor polynomials. Then, by using this matrix operation and approximation by polynomials, the HIV infection problem is transformed into a system of algebraic equations, whose roots are used to determine the approximate solutions. An important feature of the method is that it does not require collocation points. In addition, an error estimation technique is presented. We apply the present method to two numerical examples and compare our results with other methods.展开更多
文摘In this paper, the human immunodeficiency virus (HIV) infection model of CD4+ T-cells is considered. In order to numerically solve the model problem, an operational method is proposed. For that purpose, we construct the operational matrix of integration for bases of Taylor polynomials. Then, by using this matrix operation and approximation by polynomials, the HIV infection problem is transformed into a system of algebraic equations, whose roots are used to determine the approximate solutions. An important feature of the method is that it does not require collocation points. In addition, an error estimation technique is presented. We apply the present method to two numerical examples and compare our results with other methods.