A novel general purpose sense amplifier based flip flop is proposed.Compared to other flip flops,the proposed flip flop has faster operating speed under the approximately same power consumption,and needs fewer tr...A novel general purpose sense amplifier based flip flop is proposed.Compared to other flip flops,the proposed flip flop has faster operating speed under the approximately same power consumption,and needs fewer transistors and consumes smaller area.Moreover,it eliminates the glitch problem.By using pseudo PMOS dynamic technique,its performance is further improved.展开更多
The dynamic photoelastic technique is employed to visualize and quantify the propagation properties of backward Lamb waves in a plate. Higher energy leakage of second-order symmetric backward wave mode S2b in contrast...The dynamic photoelastic technique is employed to visualize and quantify the propagation properties of backward Lamb waves in a plate. Higher energy leakage of second-order symmetric backward wave mode S2b in contrast to third-order anti-symmetric backward mode A3b is shown by the dispersion curve of a plate immersed in water, and then verified by experiments. To avoid the considerable high leakage, the plate is placed in air, both group and phase velocities of modes S2b and A3b in the glass plate are experimentally measured. In comparison with the theoretical values, less than 5% errors are found in experiments.展开更多
Modeling and experiments of the growth of ash deposits during the combustion in a drop tube furnace are presented in this paper.An existing deposition model for ash deposit was used,which involves relationship among t...Modeling and experiments of the growth of ash deposits during the combustion in a drop tube furnace are presented in this paper.An existing deposition model for ash deposit was used,which involves relationship among the force of gravity,elastic rebound and adhesion forces acting at the moment of ash particle impaction.Important parameters of this model were determined by the experimental data.The influence of particle size and velocity on deposit geometry was investigated.The growth of ash deposits involving various inlet velocities,tube diameters and tube arrangements were simulated with dynamic mesh technique in Fluent.The simulation results show that particle normal impacted velocity plays an important role due to elastic bounce force term.Deposited geometry was influenced by side velocity(velocity of inlet⁃2),and large velocity has an obvious effect to change the shape of deposition and postpone the steady time.展开更多
OaAs has been widely used to fabricate a variety of optoelectronic devices by virtue of its superior performance, and it is very important to accurately measure its electrical and optical properties. In this study, a ...OaAs has been widely used to fabricate a variety of optoelectronic devices by virtue of its superior performance, and it is very important to accurately measure its electrical and optical properties. In this study, a semi- insulation (SI) GaAs wafer is investigated by the terahertz (THz) non-destructive testing technology. Using an air biased coherent generation and detection THz time domain spectroscopy system, the THz time domain waveform and spectrum of SI-GaAs are obtained by the time domain spectroscopy module, and its optical- electrical characteristics including complex refractive index, permittivity and dielectric loss angle are calculated. Its carrier lifetime is measured by the optical-pump THz-probe module, and the THz pulse induced intervalley scattering in photo-excited SI-GaAs is discussed.展开更多
An approach based on equivalent mechanics theory and computational fluid dynamics (CFD) technology is proposed to estimate dynamical influence of propellant sloshing on the spacecraft. A mechanical model is estab- l...An approach based on equivalent mechanics theory and computational fluid dynamics (CFD) technology is proposed to estimate dynamical influence of propellant sloshing on the spacecraft. A mechanical model is estab- lished by using CFD technique and packed as a "sloshing" block used in spacecraft guidance navigation and control (GNC) simulation loop. The block takes motion characteristics of the spacecraft as inputs and outputs of pertur- bative force and torques induced by propellant sloshing, thus it is more convenient for analyzing coupling effect between propellant sloshing dynamic and spacecraft GNC than using CFD packages. An example demonstrates the accuracy and the superiority of the approach. Then, the deducing process is applied to practical cases, and simulation results validate that the proposed approach is efficient for identifying the problems induced by sloshing and evaluating effectiveness of several typical designs of sloshing suppression.展开更多
Excited by ocean currents, random wave and vessel motion, deepwater drilling risers exhibit significant dynamic response. In time domain, a method is proposed to calculate the nonlinear dynmnic response of deepwater d...Excited by ocean currents, random wave and vessel motion, deepwater drilling risers exhibit significant dynamic response. In time domain, a method is proposed to calculate the nonlinear dynmnic response of deepwater drilling risers subjected to random wave and dynamic large displacement vessel motion boundary condition. Structural and functional loads, external and intemal pressure, free surfaee effect of irregular wave, hydrodynamic forees induced by current and wave, as well as wave and low frequency (drift) motion of the drilling vessel are all accounted for. An example is presented which illustrates the application of the proposed method. The study shows that long term drift motion of the vessel has profound effect on the envelopes of bending stress and lateral displacement, as well as the range of lower flex joint angle of the deepwater riser. It can also be concluded that vessel motion is the principal dynamic loading of nonlinear dynamic response for the deepwater risers rather than wave force.展开更多
The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,whi...The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,which is unfavorable to improve the performance of positive displacement blower.To investigate the effects of spiral inlet and outlet on the aerodynamic performance of positive displacement blower,three-dimensional unsteady flow characteristics in a three-lobe positive displacement blower with and without the spiral inlet and outlet are simulated by solving Navier-Stokes equations coupled with RNG k-ε turbulent model.In the numerical simulation,the dynamic mesh technique and overset mesh updating method are used.The computational results are compared with the experimental measurements on the variation of flow rate with the outlet pressure to verify the validity of the numerical method presented.The results show that the mass flow rate with the change of pressure is slightly affected by the application of spiral inlet and outlet,but the internal flow state is largely affected.In the exhaust region,the fluctuations of pressure,velocity and temperature as well as the average values of velocity are significantly reduced.This illustrates that the spiral outlet can effectively suppress the fluctuations of pressure,thus reducing reflux shock and energy dissipation.In the intake area,the average value of pressure,velocity and temperature are slightly declined,but the fluctuations of them are significantly reduced,indicating that the spiral inlet plays the role in making the flow more stable.The numerical results obtained reveal the three-dimensional flow characteristics of the positive displacement blower with spiral inlet and outlet,and provide useful reference to improve performance and empirical correction in the noise-reduction design of the positive displacement blowers.展开更多
The operating performance of positive discharge blower is markedly influenced by the pulsation of the discharge flow, but difficult to be measured with experimental methods. The internal and discharge flow of positive...The operating performance of positive discharge blower is markedly influenced by the pulsation of the discharge flow, but difficult to be measured with experimental methods. The internal and discharge flow of positive discharge blower with involute type three-lobe are numerically investigated, both in air cooling and countercurrent cooling conditions by means of computational fluid dynamics (CFD). The unsteady compressible flow equations are solved using RNG x-ε turbulent model. The finite difference method and the second order upwind difference scheme are applied into discrete equations. In the numerical simulation, the dynamic mesh techniques are used to approach the rotating displacement of cell cubage and the alterability of inlet, outlet flow area. The non-uniform mesh is applied to the rotor-stator coupled area. The reliability of the numerical method is verified by simulating the inner flow and comparing with the semi-empirical theory. The flow flux curves and the distributing of velocity vector showed obvious vortex motion in all the discharge process, both in air cooling and countercurrent cooling conditions. These vortexes with different positions, intension and numbers at different rotating angles have remarkable influences on the discharge flux. For air cooling, the vortex produced a second pulsation with big-amplitude in a cycle, and led to the early appearance of maximum of backflow. For countercurrent cooling, the frequency of pulsation increased due to the pre-inflow, but the backflow at the outlet is prevented, also the pulsation strength has greatly decreased.展开更多
As the maneuverability of a ship navigating close to a bank is influenced by the sidewall, the assessment of ship maneuvering stability is important. The hydrodynamic derivatives measured by the planar motion mechani...As the maneuverability of a ship navigating close to a bank is influenced by the sidewall, the assessment of ship maneuvering stability is important. The hydrodynamic derivatives measured by the planar motion mechanism (PMM) test provide a way to predict the change of ship maneuverability. This paper presents a numerical simulation of PMM model tests with variant distances to a vertical bank by using unsteady RANS equations. A hybrid dynamic mesh technique is developed to realize the mesh configuration and remeshing of dynamic PMM tests when the ship is close to the bank. The proposed method is validated by comparing numerical results with results of PMM tests in a circulating water channel. The first-order hydrodynamic derivatives of the ship are analyzed from the time history of lateral force and yaw moment according to the multiple-run simulating procedure and the variations of hydrodynamic derivatives with the ship-sidewall distance are given. The straight line stability and directional stability are also discussed and stable or unstable zone of proportional-derivative (PD) controller parameters for directional stability is shown, which can be a reference for course keeping operation when sailing near a bank.展开更多
The inhibition efficiencies of newly synthesized four 1-alkyl-2-substituted benzimidazole compounds(a^d) have been studied for the corrosion of carbon steel in 1.0 M HCl by using potentiodynamic polarization measure...The inhibition efficiencies of newly synthesized four 1-alkyl-2-substituted benzimidazole compounds(a^d) have been studied for the corrosion of carbon steel in 1.0 M HCl by using potentiodynamic polarization measurement. The four inhibitors act as mixed-type inhibitors,which mainly inhibit cathodes. The inhibition efficiency of these compounds enhanced when the concentration of the inhibitors increased. A theoretical study of the corrosion inhibition efficiency of these compounds was carried out by using the B3 LYP level with the 6-31+G* basis set. Considering the solvent effect,the IEFPCM model was selected. Furthermore,the adsorption energies of the inhibitors with the iron(001) surface were studied by using molecular dynamic(MD) simulations. The theoretical results show that these inhibitors all exhibit several adsorption active-centers. Meanwhile,the MD simulations indicate that the adsorption occurs mostly through benzene ring and the lone pair electrons of the nitro atoms. These results demonstrated that the theoretical studies and MD simulations are reliable and promising methods for analyzing the inhibition efficiency of organic inhibitors.展开更多
There exist major challenges in accelerating the spatial data infrastructure(SDI)planning process in the developing countries as well as advocating for politicians to support the development of SDI,due to the high com...There exist major challenges in accelerating the spatial data infrastructure(SDI)planning process in the developing countries as well as advocating for politicians to support the development of SDI,due to the high complexity of SDI,lack of knowledge and experience,and limited insight in the benefits.To address these challenges,a methodology for SDI planning in Tanzania,based on the system dynamics technique and the communities of practice concept,was adopted and applied within a community consisting of experts from stakeholder organizations.The groups gathered to develop an SDI plan,while they shared their knowledge and discussed their ideas that helped their understanding of SDI.By running the system dynamics model,the development of SDI over time could be simulated that gave the planning community an insight about the future effects of today’s plans and decisions.Finally,an optimum model could be developed by refinements and improvements done with the consensus of the SDI stakeholders.This model included the components and policies that are essential for a successful SDI implementation in Tanzania and can be used as a basis for SDI planning and help to gain political support.Lessons learnt from this research were promising regarding the usability of the methodology for SDI planning in comparable countries.展开更多
A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface ae...A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface aeration. It was calibrated and validated by field measurement data, and the calibrated parameters and sections were selected based on both model analysis and numerical computation. The simulated velocities of MLGF were compared to that of a model for wastewater-sludge flow (MWSF). The results show that the free liquid surface considered in MLGF improves the simulated velocity results of upper layer and surface. Moreover, distribution of gas volume fraction (GVF) simulated by MLGF was compared to dissolved oxygen (DO) measured in the oxidation ditch. It is shown that DO distribution is affected by many factors besides GVF distribution.展开更多
A new method for visualizing sound propagation in solids and liquids is described in this paper. The method can show the sound propagation process dynamically in two dimensions. Compared with Schlieren method and dyna...A new method for visualizing sound propagation in solids and liquids is described in this paper. The method can show the sound propagation process dynamically in two dimensions. Compared with Schlieren method and dynamic photo-elastic method, this method cannot only show the sound field distribution in liquid and solid at different time moments, but also can be applied to non-transparent solid. In addition, it does not strictly require small residual stress of the sample. The sample can, therefore, be easily made. Because the acoustic field is obtained by indirect measurements, the recording can be affected by the after-shock of the receiving sensor and is prone to the influence of the direct wave of the liquid. Putting an aluminum plate into a liquid, we recorded the compression wave, shear wave and surface wave in the aluminum and, in the liquid we also recorded the direct wave and three head waves, which are directly coupled with the compression wave, shear wave and surface wave respectively. The recording clearly depicts the coupling relationship of the sound waves through the interface between the aluminum and the liquid. Putting a plexiglass into a liquid, we also recorded the sound waves in the plexiglass and the coupling relationship between the sound waves in the two mediums.展开更多
To improve the performance of the positive displacement blower, it is imperative to understand the detailed internal flow characteristics or enable a visualization of flow status. However, the existing two-dimensional...To improve the performance of the positive displacement blower, it is imperative to understand the detailed internal flow characteristics or enable a visualization of flow status. However, the existing two-dimensional unsteady, three-dimensional steady or quasi-unsteady numerical simulation and theoretical analysis cannot provide the detailed flow information, which is unfavorable to improve the performance of positive displacement blower. Therefore, the unsteady flow characteristics in a three-lobe positive displacement blower are numerically investigated by solving the three-dimensional, unsteady, compressible Navier-Stokes equations coupled with RNG k-e turbulent model. In the numerical simulation, the dynamic mesh technique and overset mesh updating method are adopted. Due to the air being compressed in the process of the rotors rotating, the variation of the temperature field in the positive displacement blower is considered. By comparing the experimental measurements and the numerical results on the variation of flow rate with the outlet pressure, the maximum relative error of the flow rate is less than 2.15% even at the maximum outlet pressure condition, which means that the calculation model and numerical computational method used are effective. The numerical results show that in the intake region, the fluctuations of the inlet flow are greatly affected by the direction of the velocity vectors. In the exhaust region, the temperature changes significantly, which leads to the increase of the airflow pulsation. Through analysis on the velocity, pressure and temperature fields obtained from the numerical simulations, three-dimensional unsteady flow characteristics in the positive displacement blower are revealed. The studied results will provide useful reference for improving the performance and empirical correction in the design of the positive displacement blower.展开更多
We introduce a first-principles density-functional theory,i.e.the finite-difference pseudopotential density- functional theory in real space and the Langevin molecular dynamics annealing technique,to the descriptions ...We introduce a first-principles density-functional theory,i.e.the finite-difference pseudopotential density- functional theory in real space and the Langevin molecular dynamics annealing technique,to the descriptions of structures and some properties of small carbon clusters(C_N,N=2~8).It is shown that the odd-numbered clusters have linear structures and most of the even-numbered clusters prefer cyclic structures.展开更多
Based on a variety of case histories of site investigations, including extensive bore hole data, laboratory testing and geophysical prospecting at more than 550 construction sites, an empirical formulation is proposed...Based on a variety of case histories of site investigations, including extensive bore hole data, laboratory testing and geophysical prospecting at more than 550 construction sites, an empirical formulation is proposed for the rapid determination of allowable bearing pressure of shallow foundations in soils and rocks. The proposed expression corroborates consistently with the results of the classical theory and is proven to be rapid, and reliable. Plate load tests have been also carried out at three different sites, in order to further confirm the validity of the proposed method. It consists of only two soil parameters, namely, the in situ measured shear wave velocity and the unit weight. The unit weight may be also determined with sufficient accuracy, by means of other empirical expressions proposed, using P or S -- wave velocities. It is indicated that once the shear and P-wave velocities are measured in situ by an appropriate geophysical survey, the allowable bearing pressure as well as the coefficient of subgrade reaction and many other elasticity parameters may be determined rapidly and reliably.展开更多
The study ofkiloparsec-scale dual active galactic nuclei (AGN) provides important clues for understanding the co-evolution between host galaxies and their central supermassive black holes undergoing a merging proces...The study ofkiloparsec-scale dual active galactic nuclei (AGN) provides important clues for understanding the co-evolution between host galaxies and their central supermassive black holes undergoing a merging process. We present long-slit spectroscopy of J0038 +4128, a kiloparsec-scale dual AGN candidate, discovered recently by Huang et al., using the Yunnan Faint Object Spectrograph and Camera (YFOSC) mounted on the Lijiang 2.4-m telescope administered by Yunnan Observatories. From the long-slit spectra, we find that the average relative line-of-sight (LOS) velocity between the two nuclei (J0038+4128N and J0038+4128S) is about 150 km s-1. The LOS velocities of the emission lines from the gas ionized by the nuclei activities and of the absorption lines from stars governed by the host galaxies for different regions of J0038+4128 exhibit the same trend. The same trend in velocities indicates that the gaseous disks are co-rotating with the stellar disks in this ongoing merging system. We also find several knots/giant H II regions scattered around the two nuclei with strong star formation revealed by the observed line ratios from the spectra. Those regions are also clearly detected in images from HST F336W/U-band and HST F555W/V-band.展开更多
In this article,the processes of vans running into a one-way two-lane road tunnel are simulated numerically using the dynamic mesh technique and RNG k ? ε turbulence model.The transient aerodynamic characteristics a...In this article,the processes of vans running into a one-way two-lane road tunnel are simulated numerically using the dynamic mesh technique and RNG k ? ε turbulence model.The transient aerodynamic characteristics around vans are obtained in three cases:a single van,two vans side-by-side and two vans one after another running into the tunnel,respectively.Through a comparison with the results of the wind tunnel experiment,the transient simulation method is verified.The results show that,when a van runs into the tunnel,the aerodynamic drag coefficient increases near the tunnel entrance,and after entering the tunnel,the side force is generated,pointing to the tunnel wall nearer to the van.When two vans run into the tunnel side-by-side,their drag coefficients increase by 50%,and the side force varies sharply with directions changing twice near the tunnel entrance.When two vans run into tunnel one after another,the aerodynamic characteristics around the van in the front is similar to that of a single van,but the aerodynamic forces on the van behind do not have obvious change.Among the three cases,the aerodynamic forces have a sharp change when two vans run side-by-side,so driving side-by-side into a tunnel should be avoided for safety.展开更多
This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded u...This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.展开更多
文摘A novel general purpose sense amplifier based flip flop is proposed.Compared to other flip flops,the proposed flip flop has faster operating speed under the approximately same power consumption,and needs fewer transistors and consumes smaller area.Moreover,it eliminates the glitch problem.By using pseudo PMOS dynamic technique,its performance is further improved.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11374325 and 11427809
文摘The dynamic photoelastic technique is employed to visualize and quantify the propagation properties of backward Lamb waves in a plate. Higher energy leakage of second-order symmetric backward wave mode S2b in contrast to third-order anti-symmetric backward mode A3b is shown by the dispersion curve of a plate immersed in water, and then verified by experiments. To avoid the considerable high leakage, the plate is placed in air, both group and phase velocities of modes S2b and A3b in the glass plate are experimentally measured. In comparison with the theoretical values, less than 5% errors are found in experiments.
基金Sponsored by the General Programs of the National Natural Science Foundation of China(Grant No.51676058).
文摘Modeling and experiments of the growth of ash deposits during the combustion in a drop tube furnace are presented in this paper.An existing deposition model for ash deposit was used,which involves relationship among the force of gravity,elastic rebound and adhesion forces acting at the moment of ash particle impaction.Important parameters of this model were determined by the experimental data.The influence of particle size and velocity on deposit geometry was investigated.The growth of ash deposits involving various inlet velocities,tube diameters and tube arrangements were simulated with dynamic mesh technique in Fluent.The simulation results show that particle normal impacted velocity plays an important role due to elastic bounce force term.Deposited geometry was influenced by side velocity(velocity of inlet⁃2),and large velocity has an obvious effect to change the shape of deposition and postpone the steady time.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61575161 and 61427814the National Basic Research Program of China under Grant No 2014CB339800+1 种基金the Foundation of Shaanxi Key Science and Technology Innovation Team under Grant No 2014KTC-13the Special Financial Grant from the China Postdoctoral Science Foundation under Grant No 2013T60883
文摘OaAs has been widely used to fabricate a variety of optoelectronic devices by virtue of its superior performance, and it is very important to accurately measure its electrical and optical properties. In this study, a semi- insulation (SI) GaAs wafer is investigated by the terahertz (THz) non-destructive testing technology. Using an air biased coherent generation and detection THz time domain spectroscopy system, the THz time domain waveform and spectrum of SI-GaAs are obtained by the time domain spectroscopy module, and its optical- electrical characteristics including complex refractive index, permittivity and dielectric loss angle are calculated. Its carrier lifetime is measured by the optical-pump THz-probe module, and the THz pulse induced intervalley scattering in photo-excited SI-GaAs is discussed.
基金Innovation Foundation of Aerospace Science and Technology(CASC200902)~~
文摘An approach based on equivalent mechanics theory and computational fluid dynamics (CFD) technology is proposed to estimate dynamical influence of propellant sloshing on the spacecraft. A mechanical model is estab- lished by using CFD technique and packed as a "sloshing" block used in spacecraft guidance navigation and control (GNC) simulation loop. The block takes motion characteristics of the spacecraft as inputs and outputs of pertur- bative force and torques induced by propellant sloshing, thus it is more convenient for analyzing coupling effect between propellant sloshing dynamic and spacecraft GNC than using CFD packages. An example demonstrates the accuracy and the superiority of the approach. Then, the deducing process is applied to practical cases, and simulation results validate that the proposed approach is efficient for identifying the problems induced by sloshing and evaluating effectiveness of several typical designs of sloshing suppression.
基金supported by the National High Technology Research and Development Program of China(863 Program,Grant No.2006AA09A106-4)
文摘Excited by ocean currents, random wave and vessel motion, deepwater drilling risers exhibit significant dynamic response. In time domain, a method is proposed to calculate the nonlinear dynmnic response of deepwater drilling risers subjected to random wave and dynamic large displacement vessel motion boundary condition. Structural and functional loads, external and intemal pressure, free surfaee effect of irregular wave, hydrodynamic forees induced by current and wave, as well as wave and low frequency (drift) motion of the drilling vessel are all accounted for. An example is presented which illustrates the application of the proposed method. The study shows that long term drift motion of the vessel has profound effect on the envelopes of bending stress and lateral displacement, as well as the range of lower flex joint angle of the deepwater riser. It can also be concluded that vessel motion is the principal dynamic loading of nonlinear dynamic response for the deepwater risers rather than wave force.
基金supported by Fundamental Research Funds for the Central UniversitiesChina(Grant No.xjj20100073)Science and Technology Innovation Project of Shaanxi Province of China(Grant No.2011KTCL01-04)
文摘The flow in the positive displacement blower is very complex.The existing two-dimensional numerical simulation cannot provide the detailed flow information,especially flow characteristics along the axial direction,which is unfavorable to improve the performance of positive displacement blower.To investigate the effects of spiral inlet and outlet on the aerodynamic performance of positive displacement blower,three-dimensional unsteady flow characteristics in a three-lobe positive displacement blower with and without the spiral inlet and outlet are simulated by solving Navier-Stokes equations coupled with RNG k-ε turbulent model.In the numerical simulation,the dynamic mesh technique and overset mesh updating method are used.The computational results are compared with the experimental measurements on the variation of flow rate with the outlet pressure to verify the validity of the numerical method presented.The results show that the mass flow rate with the change of pressure is slightly affected by the application of spiral inlet and outlet,but the internal flow state is largely affected.In the exhaust region,the fluctuations of pressure,velocity and temperature as well as the average values of velocity are significantly reduced.This illustrates that the spiral outlet can effectively suppress the fluctuations of pressure,thus reducing reflux shock and energy dissipation.In the intake area,the average value of pressure,velocity and temperature are slightly declined,but the fluctuations of them are significantly reduced,indicating that the spiral inlet plays the role in making the flow more stable.The numerical results obtained reveal the three-dimensional flow characteristics of the positive displacement blower with spiral inlet and outlet,and provide useful reference to improve performance and empirical correction in the noise-reduction design of the positive displacement blowers.
基金supported by National Natural Science Foundation of China (Grant No. 10802058)
文摘The operating performance of positive discharge blower is markedly influenced by the pulsation of the discharge flow, but difficult to be measured with experimental methods. The internal and discharge flow of positive discharge blower with involute type three-lobe are numerically investigated, both in air cooling and countercurrent cooling conditions by means of computational fluid dynamics (CFD). The unsteady compressible flow equations are solved using RNG x-ε turbulent model. The finite difference method and the second order upwind difference scheme are applied into discrete equations. In the numerical simulation, the dynamic mesh techniques are used to approach the rotating displacement of cell cubage and the alterability of inlet, outlet flow area. The non-uniform mesh is applied to the rotor-stator coupled area. The reliability of the numerical method is verified by simulating the inner flow and comparing with the semi-empirical theory. The flow flux curves and the distributing of velocity vector showed obvious vortex motion in all the discharge process, both in air cooling and countercurrent cooling conditions. These vortexes with different positions, intension and numbers at different rotating angles have remarkable influences on the discharge flux. For air cooling, the vortex produced a second pulsation with big-amplitude in a cycle, and led to the early appearance of maximum of backflow. For countercurrent cooling, the frequency of pulsation increased due to the pre-inflow, but the backflow at the outlet is prevented, also the pulsation strength has greatly decreased.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB046804)
文摘As the maneuverability of a ship navigating close to a bank is influenced by the sidewall, the assessment of ship maneuvering stability is important. The hydrodynamic derivatives measured by the planar motion mechanism (PMM) test provide a way to predict the change of ship maneuverability. This paper presents a numerical simulation of PMM model tests with variant distances to a vertical bank by using unsteady RANS equations. A hybrid dynamic mesh technique is developed to realize the mesh configuration and remeshing of dynamic PMM tests when the ship is close to the bank. The proposed method is validated by comparing numerical results with results of PMM tests in a circulating water channel. The first-order hydrodynamic derivatives of the ship are analyzed from the time history of lateral force and yaw moment according to the multiple-run simulating procedure and the variations of hydrodynamic derivatives with the ship-sidewall distance are given. The straight line stability and directional stability are also discussed and stable or unstable zone of proportional-derivative (PD) controller parameters for directional stability is shown, which can be a reference for course keeping operation when sailing near a bank.
基金supported by the Natural Science Foundation of Jiangsu Province(BK20150123)
文摘The inhibition efficiencies of newly synthesized four 1-alkyl-2-substituted benzimidazole compounds(a^d) have been studied for the corrosion of carbon steel in 1.0 M HCl by using potentiodynamic polarization measurement. The four inhibitors act as mixed-type inhibitors,which mainly inhibit cathodes. The inhibition efficiency of these compounds enhanced when the concentration of the inhibitors increased. A theoretical study of the corrosion inhibition efficiency of these compounds was carried out by using the B3 LYP level with the 6-31+G* basis set. Considering the solvent effect,the IEFPCM model was selected. Furthermore,the adsorption energies of the inhibitors with the iron(001) surface were studied by using molecular dynamic(MD) simulations. The theoretical results show that these inhibitors all exhibit several adsorption active-centers. Meanwhile,the MD simulations indicate that the adsorption occurs mostly through benzene ring and the lone pair electrons of the nitro atoms. These results demonstrated that the theoretical studies and MD simulations are reliable and promising methods for analyzing the inhibition efficiency of organic inhibitors.
基金This study is part of the project“Geodata Infrastructure Development”implemented in collaboration between University of Dar es Salaam and Lund University and funded by the Swedish International Development Cooperation Agency(SIDA)[grant number 7500051503].
文摘There exist major challenges in accelerating the spatial data infrastructure(SDI)planning process in the developing countries as well as advocating for politicians to support the development of SDI,due to the high complexity of SDI,lack of knowledge and experience,and limited insight in the benefits.To address these challenges,a methodology for SDI planning in Tanzania,based on the system dynamics technique and the communities of practice concept,was adopted and applied within a community consisting of experts from stakeholder organizations.The groups gathered to develop an SDI plan,while they shared their knowledge and discussed their ideas that helped their understanding of SDI.By running the system dynamics model,the development of SDI over time could be simulated that gave the planning community an insight about the future effects of today’s plans and decisions.Finally,an optimum model could be developed by refinements and improvements done with the consensus of the SDI stakeholders.This model included the components and policies that are essential for a successful SDI implementation in Tanzania and can be used as a basis for SDI planning and help to gain political support.Lessons learnt from this research were promising regarding the usability of the methodology for SDI planning in comparable countries.
基金Project supported by Visiting Scholar Foundation of Key Laboratory of the Resources Exploitation and Environmental Disaster Control Engineering in Southwest China (Chongqing University),Ministry of Education,China
文摘A model for liquid-gas flow (MLGF), considering the flee movement of liquid surface, was built to simulate the wastewater velocity field and gas distribution in a full-scale Caroussel oxidation ditch with surface aeration. It was calibrated and validated by field measurement data, and the calibrated parameters and sections were selected based on both model analysis and numerical computation. The simulated velocities of MLGF were compared to that of a model for wastewater-sludge flow (MWSF). The results show that the free liquid surface considered in MLGF improves the simulated velocity results of upper layer and surface. Moreover, distribution of gas volume fraction (GVF) simulated by MLGF was compared to dissolved oxygen (DO) measured in the oxidation ditch. It is shown that DO distribution is affected by many factors besides GVF distribution.
基金Tianjin University's 985 Talent Plan, Key Project Science and Technology from Zhongyuan Oil Field and National Natural Science Foundation of China (50479070).
文摘A new method for visualizing sound propagation in solids and liquids is described in this paper. The method can show the sound propagation process dynamically in two dimensions. Compared with Schlieren method and dynamic photo-elastic method, this method cannot only show the sound field distribution in liquid and solid at different time moments, but also can be applied to non-transparent solid. In addition, it does not strictly require small residual stress of the sample. The sample can, therefore, be easily made. Because the acoustic field is obtained by indirect measurements, the recording can be affected by the after-shock of the receiving sensor and is prone to the influence of the direct wave of the liquid. Putting an aluminum plate into a liquid, we recorded the compression wave, shear wave and surface wave in the aluminum and, in the liquid we also recorded the direct wave and three head waves, which are directly coupled with the compression wave, shear wave and surface wave respectively. The recording clearly depicts the coupling relationship of the sound waves through the interface between the aluminum and the liquid. Putting a plexiglass into a liquid, we also recorded the sound waves in the plexiglass and the coupling relationship between the sound waves in the two mediums.
基金Supported by Fundamental Research Funds for the Central Universities,China(Grant No.xjj20100073)Science and Technology Innovation Project of Shaanxi Province of China(Grant No.2011KTCL01-04)
文摘To improve the performance of the positive displacement blower, it is imperative to understand the detailed internal flow characteristics or enable a visualization of flow status. However, the existing two-dimensional unsteady, three-dimensional steady or quasi-unsteady numerical simulation and theoretical analysis cannot provide the detailed flow information, which is unfavorable to improve the performance of positive displacement blower. Therefore, the unsteady flow characteristics in a three-lobe positive displacement blower are numerically investigated by solving the three-dimensional, unsteady, compressible Navier-Stokes equations coupled with RNG k-e turbulent model. In the numerical simulation, the dynamic mesh technique and overset mesh updating method are adopted. Due to the air being compressed in the process of the rotors rotating, the variation of the temperature field in the positive displacement blower is considered. By comparing the experimental measurements and the numerical results on the variation of flow rate with the outlet pressure, the maximum relative error of the flow rate is less than 2.15% even at the maximum outlet pressure condition, which means that the calculation model and numerical computational method used are effective. The numerical results show that in the intake region, the fluctuations of the inlet flow are greatly affected by the direction of the velocity vectors. In the exhaust region, the temperature changes significantly, which leads to the increase of the airflow pulsation. Through analysis on the velocity, pressure and temperature fields obtained from the numerical simulations, three-dimensional unsteady flow characteristics in the positive displacement blower are revealed. The studied results will provide useful reference for improving the performance and empirical correction in the design of the positive displacement blower.
基金The project supported by National Natural Science Foundation of China under Grant No.10274055the Research Fund for the Doctoral Program of High Education of China under Grant No.20020610001
文摘We introduce a first-principles density-functional theory,i.e.the finite-difference pseudopotential density- functional theory in real space and the Langevin molecular dynamics annealing technique,to the descriptions of structures and some properties of small carbon clusters(C_N,N=2~8).It is shown that the odd-numbered clusters have linear structures and most of the even-numbered clusters prefer cyclic structures.
文摘Based on a variety of case histories of site investigations, including extensive bore hole data, laboratory testing and geophysical prospecting at more than 550 construction sites, an empirical formulation is proposed for the rapid determination of allowable bearing pressure of shallow foundations in soils and rocks. The proposed expression corroborates consistently with the results of the classical theory and is proven to be rapid, and reliable. Plate load tests have been also carried out at three different sites, in order to further confirm the validity of the proposed method. It consists of only two soil parameters, namely, the in situ measured shear wave velocity and the unit weight. The unit weight may be also determined with sufficient accuracy, by means of other empirical expressions proposed, using P or S -- wave velocities. It is indicated that once the shear and P-wave velocities are measured in situ by an appropriate geophysical survey, the allowable bearing pressure as well as the coefficient of subgrade reaction and many other elasticity parameters may be determined rapidly and reliably.
基金Funding for the telescope has been provided by CASthe People’s Government of Yunnan Province+2 种基金supported by the National Natural Science Foundation of China(Grant Nos.11133006 and 11361140347)the Strategic Priority Research Program“The Emergence of Cosmological Structures”of the Chinese Academy of Sciences(Grant No.XDB09000000)support by the National Key Basic Research Program of China(2014CB845700)
文摘The study ofkiloparsec-scale dual active galactic nuclei (AGN) provides important clues for understanding the co-evolution between host galaxies and their central supermassive black holes undergoing a merging process. We present long-slit spectroscopy of J0038 +4128, a kiloparsec-scale dual AGN candidate, discovered recently by Huang et al., using the Yunnan Faint Object Spectrograph and Camera (YFOSC) mounted on the Lijiang 2.4-m telescope administered by Yunnan Observatories. From the long-slit spectra, we find that the average relative line-of-sight (LOS) velocity between the two nuclei (J0038+4128N and J0038+4128S) is about 150 km s-1. The LOS velocities of the emission lines from the gas ionized by the nuclei activities and of the absorption lines from stars governed by the host galaxies for different regions of J0038+4128 exhibit the same trend. The same trend in velocities indicates that the gaseous disks are co-rotating with the stellar disks in this ongoing merging system. We also find several knots/giant H II regions scattered around the two nuclei with strong star formation revealed by the observed line ratios from the spectra. Those regions are also clearly detected in images from HST F336W/U-band and HST F555W/V-band.
基金supported by the National Natural Science Foundation of China (Grant No. 10802042)the NaturalScience Foundation of Shandong Province (Grant No.Y2007A04)
文摘In this article,the processes of vans running into a one-way two-lane road tunnel are simulated numerically using the dynamic mesh technique and RNG k ? ε turbulence model.The transient aerodynamic characteristics around vans are obtained in three cases:a single van,two vans side-by-side and two vans one after another running into the tunnel,respectively.Through a comparison with the results of the wind tunnel experiment,the transient simulation method is verified.The results show that,when a van runs into the tunnel,the aerodynamic drag coefficient increases near the tunnel entrance,and after entering the tunnel,the side force is generated,pointing to the tunnel wall nearer to the van.When two vans run into the tunnel side-by-side,their drag coefficients increase by 50%,and the side force varies sharply with directions changing twice near the tunnel entrance.When two vans run into tunnel one after another,the aerodynamic characteristics around the van in the front is similar to that of a single van,but the aerodynamic forces on the van behind do not have obvious change.Among the three cases,the aerodynamic forces have a sharp change when two vans run side-by-side,so driving side-by-side into a tunnel should be avoided for safety.
基金supported by the National Natural Science Foundation of China(No.11532002)
文摘This article presents a complete nonlinear controller design for a class of spin-stabilized canard-controlled projectiles.Uniformly ultimate boundedness and tracking are achieved,exploiting a heavily coupled,bounded uncertain and highly nonlinear model of longitudinal and lateral dynamics.In order to estimate unmeasurable states,an observer is proposed for an augmented multiple-input-multiple-output(MIMO) nonlinear system with an adaptive sliding mode term against the disturbances.Under the frame of a backstepping design,an adaptive sliding mode output-feedback dynamic surface control(DSC) approach is derived recursively by virtue of the estimated states.The DSC technique is adopted to overcome the problem of ‘‘explosion of complexity" and relieve the stress of the guidance loop.It is proven that all signals of the MIMO closed-loop system,including the observer and controller,are uniformly ultimately bounded,and the tracking errors converge to an arbitrarily small neighborhood of the origin.Simulation results for the observer and controller are provided to illustrate the feasibility and effectiveness of the proposed approach.