In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent techno...In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent technology education and digital reform,the combination of virtual reality and campus management is the need for innovative thinking and economic and social development,and then better change our learning style and living environment.The construction of the digital campus is based on virtual reality technology,BIM,GIS,and three-dimensional modeling technology to provide an immersive platform for students,promote the integration of virtual reality technology and education,help teachers,students,and parents to understand all kinds of education information and resources,to achieve their interoperability.From the off-campus environment to the school teaching equipment,teachers to teaching quality certification,and learning,to extracurricular entertainment,opening ceremonies to graduation parties,to bring more efficient,convenient,and safe campus life for teachers,students,and staff in school,and break the traditional information restrictions.展开更多
With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to t...With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.展开更多
With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and fut...With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and future potential of 3D printing technology in dental medicine and to analyze its benefits and challenges.It first introduces the current state of 3D printing technology in dental implants,crowns,bridges,orthodontics,and maxillofacial surgery.It then discusses the potential applications of 3D printing technology in oral tissue engineering,drug delivery systems,personalized dental prosthetics,and surgical planning.Finally,it analyzes the benefits of 3D printing technology in dental medicine,such as improving treatment accuracy and patient comfort,and shortening treatment times,while also highlighting the challenges faced,such as costs,material choices,and technical limitations.This article aims to provide a reference for professionals in the field of dental medicine and to promote the further application and development of 3D printing technology in this area.展开更多
Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent...Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.展开更多
After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting anci...After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting ancient buildings, it is necessary to obtain the precise dimensions of architectural details. In this study, the path of 3D laser scanning combined with BIM technology is explored. Taking the observation and protection of the ancestral hall of the Liu family as an example, this study aims to draw drawings that reflect the relevant information about the ancient buildings, the accurate three-dimensional model of ancient buildings is established with BIM technology, which provides new methods and ideas for the research and protection of ancient buildings. .展开更多
The informatization of higher vocational education is the future development trend,and it is also encouraged and promoted by the Ministry of Education.This article focuses on the road and bridge major,combined with th...The informatization of higher vocational education is the future development trend,and it is also encouraged and promoted by the Ministry of Education.This article focuses on the road and bridge major,combined with the author’s experience in introducing virtual simulation and three-dimensional(3D)animation technology into relevant course teaching in recent years,discusses the application of virtual simulation and 3D animation technology in higher vocational education and promotes classroom revolution,to obtain better teaching effect.展开更多
The application of virtual reality technology has become more and more influential in garden design. Quest3D as a significant software to realize the virtual reality technology is utilized in this study to make a gard...The application of virtual reality technology has become more and more influential in garden design. Quest3D as a significant software to realize the virtual reality technology is utilized in this study to make a garden roaming demonstration system with the gardening design of a classical courtyard as an example. Besides, the advantages and disadvantages of applying Quest3D technology in garden landscape design are elaborated from the perspective of the selection of Quest3D technology, basic procedures for the selection and establishment of software and hardware.展开更多
Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound seg...Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.展开更多
The aromatic compounds,including o-xylene,m-xylene,p-xylene,and ethylbenzene,primarily originate from the catalytic reforming of crude oil,and have a wide variety of applications.However,because of similar physical an...The aromatic compounds,including o-xylene,m-xylene,p-xylene,and ethylbenzene,primarily originate from the catalytic reforming of crude oil,and have a wide variety of applications.However,because of similar physical and chemical properties,these compounds are difficult to be identified by gas chromatography(GC)without standard samples.With the development of modern nuclear magnetic resonance(NMR)techniques,NMR has emerged as a powerful and efficient tool for the rapid analysis of complex and crude mixtures without purification.In this study,the parameters of one-dimensional(1D)total correlation spectroscopy(TOCSY)NMR techniques,including 1D selective gradient TOCSY and 1D chemicalshift-selective filtration(CSSF)with TOCSY,were optimized to obtain comprehensive molecular structure information.The results indicate that the overlapped signals in NMR spectra of nonpolar aromatic compounds(including o-xylene,m-xylene,p-xylene and ethylbenzene),polar aromatic compounds(benzyl alcohol,benzaldehyde,benzoic acid),and aromatic compounds with additional conjugated bonds(styrene)can be resolved in 1D TOCSY.More importantly,full molecular structures can be clearly distinguished by setting appropriate mixing time in 1D TOCSY.This approach simplifies the NMR spectra,provides structural information of entire molecules,and can be applied for the analysis of other structural isomers.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
The Gouméré region is located in the North-East of Côte d’Ivoire and is located in the South-West of the Bui furrow. In order to highlight the geology of the area studied, 14 samples were taken for stu...The Gouméré region is located in the North-East of Côte d’Ivoire and is located in the South-West of the Bui furrow. In order to highlight the geology of the area studied, 14 samples were taken for studies using petrographic, geochemical and metallogenic methods. The study of macroscopic and microscopic petrography made it possible to highlight two major lithological units: 1) a volcano-plutonic unit, formed of gabbros, basalt, volcaniclastics and rhyodacite;2) a sedimentary unit (microconglomerate). From a geochemical point of view, the results obtained indicate that the plutonites are gabbro and gabbro diorite while the volcanics have compositions of basaltic andesites, rhyolite and dacites. The sediments have a litharenitic to sublitharenitic character. The metallogenic study made it possible to highlight hydrothermal alterations and metalliferous paragenesis on the formations studied. Hydrothermal alteration is characterized by the presence of carbonation, silicification, sericitization, sulfidation and to a lesser degree chloritization. Metalliferous paragenesis consists of pyrite, chalcopyrite, hematite and magnetite.展开更多
文摘In recent years,the government has issued a series of documents to promote the construction of digital campuses.This initiative serves to encourage the deep integration of information technology and intelligent technology education and digital reform,the combination of virtual reality and campus management is the need for innovative thinking and economic and social development,and then better change our learning style and living environment.The construction of the digital campus is based on virtual reality technology,BIM,GIS,and three-dimensional modeling technology to provide an immersive platform for students,promote the integration of virtual reality technology and education,help teachers,students,and parents to understand all kinds of education information and resources,to achieve their interoperability.From the off-campus environment to the school teaching equipment,teachers to teaching quality certification,and learning,to extracurricular entertainment,opening ceremonies to graduation parties,to bring more efficient,convenient,and safe campus life for teachers,students,and staff in school,and break the traditional information restrictions.
文摘With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.
文摘With the continuous advancement of technology,the application of 3D printing technology in the field of dental medicine is becoming increasingly widespread.This article aims to explore the current applications and future potential of 3D printing technology in dental medicine and to analyze its benefits and challenges.It first introduces the current state of 3D printing technology in dental implants,crowns,bridges,orthodontics,and maxillofacial surgery.It then discusses the potential applications of 3D printing technology in oral tissue engineering,drug delivery systems,personalized dental prosthetics,and surgical planning.Finally,it analyzes the benefits of 3D printing technology in dental medicine,such as improving treatment accuracy and patient comfort,and shortening treatment times,while also highlighting the challenges faced,such as costs,material choices,and technical limitations.This article aims to provide a reference for professionals in the field of dental medicine and to promote the further application and development of 3D printing technology in this area.
基金the support of the National Natural Science Foundation of China(Grant Nos.42207199,52179113,42272333)Zhejiang Postdoctoral Scientific Research Project(Grant Nos.ZJ2022155,ZJ2022156)。
文摘Three-dimensional(3D)printing technology is increasingly used in experimental research of geotechnical engineering.Compared to other materials,3D layer-by-layer printing specimens are extremely similar to the inherent properties of natural layered rock masses.In this paper,soft-hard interbedded rock masses with different dip angles were prepared based on 3D printing(3DP)sand core technology.Uniaxial compression creep tests were conducted to investigate its anisotropic creep behavior based on digital imaging correlation(DIC)technology.The results show that the anisotropic creep behavior of the 3DP soft-hard interbedded rock mass is mainly affected by the dip angles of the weak interlayer when the stress is at low levels.As the stress level increases,the effect of creep stress on its creep anisotropy increases significantly,and the dip angle is no longer the main factor.The minimum value of the long-term strength and creep failure strength always appears in the weak interlayer within 30°–60°,which explains why the failure of the layered rock mass is controlled by the weak interlayer and generally emerges at 45°.The tests results are verified by comparing with theoretical and other published studies.The feasibility of the 3DP soft-hard interbedded rock mass provides broad prospects and application values for 3DP technology in future experimental research.
文摘After more than 30 years of scientific and social development, surveying and mapping technology by leaps and bounds, engineering surveying technology has undergone tremendous changes. In the process of protecting ancient buildings, it is necessary to obtain the precise dimensions of architectural details. In this study, the path of 3D laser scanning combined with BIM technology is explored. Taking the observation and protection of the ancestral hall of the Liu family as an example, this study aims to draw drawings that reflect the relevant information about the ancient buildings, the accurate three-dimensional model of ancient buildings is established with BIM technology, which provides new methods and ideas for the research and protection of ancient buildings. .
基金2021 Chongqing Energy Vocational College Science and Technology Department Teaching Reform Project"Discussion and Practice of Teaching Reform of"Bridge and Culvert Engineering Construction Technology"Based on Road and Bridge Simulation Software"(202106)。
文摘The informatization of higher vocational education is the future development trend,and it is also encouraged and promoted by the Ministry of Education.This article focuses on the road and bridge major,combined with the author’s experience in introducing virtual simulation and three-dimensional(3D)animation technology into relevant course teaching in recent years,discusses the application of virtual simulation and 3D animation technology in higher vocational education and promotes classroom revolution,to obtain better teaching effect.
文摘The application of virtual reality technology has become more and more influential in garden design. Quest3D as a significant software to realize the virtual reality technology is utilized in this study to make a garden roaming demonstration system with the gardening design of a classical courtyard as an example. Besides, the advantages and disadvantages of applying Quest3D technology in garden landscape design are elaborated from the perspective of the selection of Quest3D technology, basic procedures for the selection and establishment of software and hardware.
文摘Facial wound segmentation plays a crucial role in preoperative planning and optimizing patient outcomes in various medical applications.In this paper,we propose an efficient approach for automating 3D facial wound segmentation using a two-stream graph convolutional network.Our method leverages the Cir3D-FaIR dataset and addresses the challenge of data imbalance through extensive experimentation with different loss functions.To achieve accurate segmentation,we conducted thorough experiments and selected a high-performing model from the trainedmodels.The selectedmodel demonstrates exceptional segmentation performance for complex 3D facial wounds.Furthermore,based on the segmentation model,we propose an improved approach for extracting 3D facial wound fillers and compare it to the results of the previous study.Our method achieved a remarkable accuracy of 0.9999993% on the test suite,surpassing the performance of the previous method.From this result,we use 3D printing technology to illustrate the shape of the wound filling.The outcomes of this study have significant implications for physicians involved in preoperative planning and intervention design.By automating facial wound segmentation and improving the accuracy ofwound-filling extraction,our approach can assist in carefully assessing and optimizing interventions,leading to enhanced patient outcomes.Additionally,it contributes to advancing facial reconstruction techniques by utilizing machine learning and 3D bioprinting for printing skin tissue implants.Our source code is available at https://github.com/SIMOGroup/WoundFilling3D.
基金We thank the Natural Science Foundation of Shanxi Province(202103021224439)National Natural Science Foundation of China(22075308)for financial support.
文摘The aromatic compounds,including o-xylene,m-xylene,p-xylene,and ethylbenzene,primarily originate from the catalytic reforming of crude oil,and have a wide variety of applications.However,because of similar physical and chemical properties,these compounds are difficult to be identified by gas chromatography(GC)without standard samples.With the development of modern nuclear magnetic resonance(NMR)techniques,NMR has emerged as a powerful and efficient tool for the rapid analysis of complex and crude mixtures without purification.In this study,the parameters of one-dimensional(1D)total correlation spectroscopy(TOCSY)NMR techniques,including 1D selective gradient TOCSY and 1D chemicalshift-selective filtration(CSSF)with TOCSY,were optimized to obtain comprehensive molecular structure information.The results indicate that the overlapped signals in NMR spectra of nonpolar aromatic compounds(including o-xylene,m-xylene,p-xylene and ethylbenzene),polar aromatic compounds(benzyl alcohol,benzaldehyde,benzoic acid),and aromatic compounds with additional conjugated bonds(styrene)can be resolved in 1D TOCSY.More importantly,full molecular structures can be clearly distinguished by setting appropriate mixing time in 1D TOCSY.This approach simplifies the NMR spectra,provides structural information of entire molecules,and can be applied for the analysis of other structural isomers.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
文摘The Gouméré region is located in the North-East of Côte d’Ivoire and is located in the South-West of the Bui furrow. In order to highlight the geology of the area studied, 14 samples were taken for studies using petrographic, geochemical and metallogenic methods. The study of macroscopic and microscopic petrography made it possible to highlight two major lithological units: 1) a volcano-plutonic unit, formed of gabbros, basalt, volcaniclastics and rhyodacite;2) a sedimentary unit (microconglomerate). From a geochemical point of view, the results obtained indicate that the plutonites are gabbro and gabbro diorite while the volcanics have compositions of basaltic andesites, rhyolite and dacites. The sediments have a litharenitic to sublitharenitic character. The metallogenic study made it possible to highlight hydrothermal alterations and metalliferous paragenesis on the formations studied. Hydrothermal alteration is characterized by the presence of carbonation, silicification, sericitization, sulfidation and to a lesser degree chloritization. Metalliferous paragenesis consists of pyrite, chalcopyrite, hematite and magnetite.