期刊文献+
共找到1,547篇文章
< 1 2 78 >
每页显示 20 50 100
Types,composition and diagenetic evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata:A case study of Mao-1 Member of Middle Permian Maokou Formation,eastern Sichuan Basin,SW China
1
作者 SONG Jinmin WANG Jiarui +12 位作者 LIU Shugen LI Zhiwu LUO Ping JIANG Qingchun JIN Xin YANG Di HUANG Shipeng FAN Jianping YE Yuehao WANG Junke DENG Haoshuang WANG Bin GUO Jiaxin 《Petroleum Exploration and Development》 SCIE 2024年第2期351-363,共13页
The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin w... The types,occurrence and composition of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata of the first member of the Middle Permian Maokou Formation(Mao-1 Member)in eastern Sichuan Basin were investigated through outcrop section measurement,core observation,thin section identification,argon ion polishing,X-ray diffraction,scanning electron microscope,energy spectrum analysis and laser ablation-inductively coupled plasma-mass spectrometry.The diagenetic evolution sequence of clay minerals was clarified,and the sedimentary-diagenetic evolution model of clay minerals was established.The results show that authigenic sepiolite minerals were precipitated in the Si4+and Mg2+-rich cool aragonite sea and sepiolite-bearing strata were formed in the Mao-1 Member.During burial diagenesis,authigenic clay minerals undergo two possible evolution sequences.First,from the early diagenetic stage A to the middle diagenetic stage A1,the sepiolite kept stable in the shallow-buried environment lack of Al3+.It began to transform into stevensite in the middle diagenetic stage A2,and then evolved into disordered talc in the middle diagenetic stage B1and finally into talc in the period from the middle diagenetic stage B2to the late diagenetic stage.Thus,the primary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-stevensite-disordered talc-talc,was formed in the Mao-1 Member.Second,in the early diagenetic stage A,as Al3+carried by the storm and upwelling currents was involved in the diagenetic process,trace of sepiolite started to evolve into smectite,and a part of smectite turned into chlorite.From the early diagenetic stage B to the middle diagenesis stage A1,a part of smectite evolved to illite/smectite mixed layer(I/S).The I/S evolved initially into illite from the middle diagenesis stage A2to the middle diagenesis stage B2,and then totally into illite in the late diagenesis stage.Thus,the secondary diagenetic evolution sequence of authigenic clay minerals,i.e.sepiolite-smectite-chlorite/illite,was formed in the Mao-1 Member.The types and evolution of authigenic clay minerals in argillaceous limestone of sepiolite-bearing strata are significant for petroleum geology in two aspects.First,sepiolite can adsorb and accumulate a large amount of organic matters,thereby effectively improving the quality and hydrocarbon generation potential of the source rocks of the Mao-1 Member.Second,the evolution from sepiolite to talc is accompanied by the formation of numerous organic matter pores and clay shrinkage pores/fractures,as well as the releasing of the Mg2+-rich diagenetic fluid,which allows for the dolomitization of limestone within or around the sag.As a result,the new assemblages of self-generation and self-accumulation,and lower/side source and upper/lateral reservoir,are created in the Middle Permian,enhancing the hydrocarbon accumulation efficiency. 展开更多
关键词 sepiolite-bearing strata authigenic clay minerals diagenetic evolution Mao First Member of Middle Permian sichuan basin
下载PDF
Extensional structures of the Nan'an Basin in the rifting tip of the South China Sea: Implication for tectonic evolution of the southwestern continental margin
2
作者 Shi-Guo Wu Li Zhang +5 位作者 Zhen-Yu Lei Xing Qian Shuai-Bing Luo Xiang-Yang Lu Thomas Lüdmann Lei Tian 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期128-140,共13页
Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South C... Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea. 展开更多
关键词 Sedimentary basin Seismic sequence RIFTING tectonic evolution South China Sea
下载PDF
Formation and evolution of the strike-slip faults in the central Sichuan Basin, SW China 被引量:2
3
作者 MA Bingshan LIANG Han +7 位作者 WU Guanghui TANG Qingsong TIAN Weizhen ZHANG Chen YANG Shuai ZHONG Yuan ZHANG Xuan ZHANG Zili 《Petroleum Exploration and Development》 SCIE 2023年第2期373-387,共15页
Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cem... Based on 3D seismic and drilling data, the timing, evolution and genetic mechanism of deep strike-slip faults in the central Sichuan Basin are thoroughly examined by using the U-Pb dating of fault-filled carbonate cement and seismic-geological analysis. The strike-slip fault system was initially formed in the Late Sinian, basically finalized in the Early Cambrian with dextral transtensional structure, was overlaid with at least one stage of transpressional deformation before the Permian, then was reversed into a sinistral weak transtensional structure in the Late Permian. Only a few of these faults were selectively activated in the Indosinian and later periods. The strike-slip fault system was affected by the preexisting structures such as Nanhuanian rifting normal faults and NW-striking deep basement faults. It is an oblique accommodated intracratonic transfer fault system developed from the Late Sinian to Early Cambrian to adjust the uneven extension of the Anyue trough from north to south and matches the Anyue trough in evolution time and intensity. In the later stage, multiple inversion tectonics and selective activation occurred under different tectonic backgrounds. 展开更多
关键词 strike-slip fault fault timing fault evolution seismic-geological analysis U-Pb dating faulting mechanism cra-tonic sichuan basin
下载PDF
Sequence structure, sedimentary evolution and their controlling factors of the Jurassic Lianggaoshan Formation in the East Sichuan Basin, SW China
4
作者 CHENG Dawei ZHANG Zhijie +6 位作者 HONG Haitao ZHANG Shaomin QIN Chunyu YUAN Xuanjun ZHANG Bin ZHOU Chuanmin DENG Qingjie 《Petroleum Exploration and Development》 SCIE 2023年第2期293-305,共13页
Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the ... Based on the data of outcrops, seismic sections, thin sections, heavy mineral assemblages and detrital zircon U-Pb dating, the sedimentary characteristics, lake level fluctuation and provenance characteristics of the Middle Jurassic Lianggaoshan Formation(J_(2)l) in eastern Sichuan Basin, SW China, were investigated to reveal the control of tectonic movements of the surrounding orogenic belts on the sedimentary systems. The J_(2)lmainly developed a delta–lake sedimentary system, which contained a complete third-order sequence that was subdivided into four lake level up-down cycles(fourth-order sequence).The lake basins of cycles Ⅰ and Ⅱ were mainly distributed in eastern Sichuan Basin, while the lake basins of cycles Ⅲ and Ⅳ migrated to central Sichuan Basin, resulting in the significant difference in sedimentary characteristics between the north and the south of eastern Sichuan Basin. The provenance analysis shows that there were three types of provenances for J_(2)l. Specifically, the parent rocks of Type Ⅰ were mainly acidic igneous rocks and from the proximal northern margin of the Yangtze Plate;the parent rocks of Type Ⅱ were intermediate-acid igneous rocks and metamorphic rocks and from the central parts of the southern and northern Qinling orogenic belts;the parent rocks of Type Ⅲ were mainly metamorphic rocks followed by intermediate–acid igneous rocks, and from the North Daba Mountain area. It is recognized from the changes of sedimentary system and provenance characteristics that the sedimentary evolution of J_(2)lin eastern Sichuan Basin was controlled by the tectonic compression of the Qinling orogenic belt. In the early stage, the lake basin was restricted to the east of the study area, and Type Ⅰ provenance was dominant. With the intensifying north-south compression of the Qinling orogenic belt, the lake basin expanded rapidly and migrated northward, and the supply of Type Ⅱ provenance increased. In the middle and late stages, the uplift of the North Daba Mountain led to the lake basin migration and the gradual increase in the supply of Type Ⅲ provenance. 展开更多
关键词 sichuan basin JURASSIC Lianggaoshan Formation heavy mineral assemblage zircon U-Pb dating lake basin migration provenance analysis basin-mountain evolution
下载PDF
Structural attributes,evolution and petroleum geological significances of the Tongnan negative structure in the central Sichuan Basin,SW China
5
作者 TIAN Fanglei WU Furong +6 位作者 HE Dengfa ZHAO Xiaohui LIU Huan ZHANG Qiaoyi LE Jinbo CHEN Jingyu LU Guo 《Petroleum Exploration and Development》 SCIE 2023年第5期1120-1136,共17页
The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influ... The Tongnan secondary negative structure in central Sichuan Basin has controls and influences on the structural framework and petroleum geological conditions in the Gaoshiti-Moxi area.To clarify the controls and influences,the deformation characteristics,structural attributes and evolution process of the Tongnan negative structure were investigated through a series of qualitative and quantitative methods such as balanced profile restoration,area-depth-strain(ADS)analysis,and structural geometric forward numerical simulation,after comprehensive structural interpretation of high-precision 3D seismic data.The results are obtained in three aspects.First,above and below the P/AnP(Permian/pre-Permian)unconformity,the Tongnan negative structure demonstrates vertical differential structural deformation.It experiences two stages of structural stacking and reworking:extensional depression(from the Sinian Dengying Formation to the Permian),and compressional syncline deformation(after the Jurassic).The multi-phase trishear deformation of the preexisting deep normal faults dominated the extensional depression.The primary depression episodes occurred in the periods from the end of Late Proterozoic to the deposition of the 1st–2nd members of the Dengying Formation,and from the deposition of Lower Cambrian Longwangmiao Formation–Middle–Upper Cambrian until the Ordovician.Second,the multi-stage evolution process of the Tongnan negative structure controlled the oil and gas migration and adjustment and present-day differential gas and water distribution between the Tongnan negative structure and the Gaoshiti and Moxi-Longnüsi structural highs.Third,the Ordovician,which is limitedly distributed in the Tongnan negative structure and is truncated by the P/AnP unconformity on the top,has basic geological conditions for the formation of weathering karst carbonate reservoirs.It is a new petroleum target deserving attention. 展开更多
关键词 structural attribute structural evolution Sinian Dengying Formation oil and gas negative structure Gaoshiti-Moxi area sichuan basin
下载PDF
Petrologic perspectives on tectonic evolution of a nascent basin(Okinawa Trough) behind Ryukyu Arc: A review 被引量:28
6
作者 YAN Quanshu SHI Xuefa 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第4期1-12,共12页
Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippin... Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Oki-nawa Trough lavas:sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and sub-continental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the"seafloor spreading"process in the southwest segment,"rift propagation"process in the middle seg-ment, and"crustal extension"process in the northeast segment, and a nascent ocean basin occurs in the southwest segment. 展开更多
关键词 nascent ocean basin SPREADING tectonic evolution PETROLOGY GEOCHEMISTRY Okinawa Trough
下载PDF
Earthquake-related Tectonic Deformation of Soft-sediments and Its Constraints on Basin Tectonic Evolution 被引量:13
7
作者 LU Hongbo ZHANG Yuxu +1 位作者 ZHANG Qiling XIAO Jiafei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2006年第5期724-732,共9页
The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolu... The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle. 展开更多
关键词 earthquake tectonic deformation of soft-sediments syn-sedimentary extension structure syn-compression structure tectonic evolution of basins
下载PDF
Tectonic Fractures in Tight Gas Sandstones of the Upper Triassic Xujiahe Formation in the Western Sichuan Basin,China 被引量:11
8
作者 ZENG Lianbo LI Yuegang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第5期1229-1238,共10页
The western Sichuan Basin, which is located at the front of the Longmen Mountains in the west of Sichuan Province, China, is a foreland basin formed in the Late Triassic. The Upper Triassic Xujiahe Formation is a tigh... The western Sichuan Basin, which is located at the front of the Longmen Mountains in the west of Sichuan Province, China, is a foreland basin formed in the Late Triassic. The Upper Triassic Xujiahe Formation is a tight gas sandstone reservoir with low porosity and ultra-low permeability, whose gas accumulation and production are controlled by well-developed fracture zones. There are mainly three types of fractures developed in the Upper Triassic tight gas sandstones, namely tectonic fractures, diagenetic fractures and overpressure-related fractures, of which high-angle tectonic fractures are the most important. The tectonic fractures can be classified into four sets, i.e., N-S-, NE-, E-W- and NW-striking fractures. In addition, there are a number of approximately horizontal shear fractures in some of the medium-grained sandstones and grit stones nearby the thrusts or slip layers. Tectonic fractures were mainly formed at the end of the Triassic, the end of the Cretaceous and the end of the Neogene-Early Pleistocene. The development degree of tectonic fractures was controlled by lithology, thickness, structure, stress and fluid pressure. Overpressure makes not only the rock shear strength decrease, but also the stress state change from compression to tension. Thus, tensional fractures can he formed in fold-thrust belts. Tectonic fractures are mainly developed along the NE- and N-S-striking structural belts, and are the important storage space and the principal flow channels in the tight gas sandstone. The porosity of fractures here is 28.4% of the gross reservoir porosity, and the permeability of fractures being two or three grades higher than that of the matrix pores. Four sets of high-angle tectonic fractures and horizontal shear fractures formed a good network system and controlled the distribution and production of gas in the tight sandstones. 展开更多
关键词 tectonic fracture distribution characteristics controlling factor Xujiahe Formation western sichuan basin
下载PDF
Basin assemblages and tectonic evolution in the Bohai Gulfand its neighbors 被引量:7
9
作者 Li Sanzhong Xu Shumei +5 位作者 Shan Yehua Li Xishuang Zhou Lihong Hao Yinquan Fan Zheqing Liang Huilan 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2000年第4期91-105,共15页
According to multi- disciplinary research advances in recent years, three blocks which named Jiaoliao - Bohai block, central North China block and Ordos block are divided. The differences of the tectonic association, ... According to multi- disciplinary research advances in recent years, three blocks which named Jiaoliao - Bohai block, central North China block and Ordos block are divided. The differences of the tectonic association, types, styles and features in the space, and evolution from Archaean to Cenozoic in the time, between the former two blocks are discussed. Tectonic features and evolution in the four tectonic stages of Precambrian, Indo- China, Yanshanian and Cenozoic are emphasized especially here. All of them described above have inherit and neogenic property. The temporal-spatial change and interaction among basin assemblages in the above four stages are analyzed. Escape tectonic model is employed to interpret coeval compressive and extensional basins in the study area. 展开更多
关键词 Bohai basin tectonic evolution basin assemblage PRECAMBRIAN CENOZOIC
下载PDF
Tectonic Evolution of the Wanan Basin,Southwestern South China Sea 被引量:4
10
作者 Lü Caili ZHANG Gongcheng +1 位作者 YAO Yongjian WU Shiguo 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2014年第4期1120-1130,共11页
Quantitative studies on the extension and subsidence of the Wanan Basin were carried out based on available seismic and borehole data together with regional geological data. Using balanced cross-section and backstripp... Quantitative studies on the extension and subsidence of the Wanan Basin were carried out based on available seismic and borehole data together with regional geological data. Using balanced cross-section and backstripping techniques, we reconstructed the stratigraphic deposition and tectonic evolution histories of the basin. The basin formed from the Eocene and was generally in an extensional/transtensional state except for the Late Miocene local compressoin. The major basin extension ocurred in the Oligocene and Early Miocene (before -16.3 Ma) and thereafter uniform stretch in a smaller rate. The northern and middle basin extended intensely earlier during 38.6-23.3 Ma, while the southern basin was mainly stretched during 23.3-16.3 Ma. The basin formation and development are related to alternating sinistral to dextral strike-slip motions along the Wanan Fault Zone. The dominant dynamics may be caused by the seafloor spreading of the South China Sea and the its peripheral plate interaction. The basin tectonic evolution is divided into five phases: initial rifting, main rifting, rift-drift transition, structural inversion, and thermal subsidence. 展开更多
关键词 tectonic evolution stretch factor Wanan basin South China Sea
下载PDF
Tectonic evolution and its control over deposition in fault basins: A case study of the Western Sag of the Cenozoic Liaohe Depression, eastern China 被引量:3
11
作者 Zhang Zhen Bao Zhidong +2 位作者 Tong Hengmao Wang Yong Li Haowu 《Petroleum Science》 SCIE CAS CSCD 2013年第3期269-281,共13页
The main petroliferous basins in eastern China are Cenozoic fault basins, most of which have experienced two-stage tectonic evolution, i.e., rifting subsidence in the Paleogene and post-rifting thermal subsidence in t... The main petroliferous basins in eastern China are Cenozoic fault basins, most of which have experienced two-stage tectonic evolution, i.e., rifting subsidence in the Paleogene and post-rifting thermal subsidence in the Neogene-Quaternary. The episodic tectonic evolution and syndepositional faulting had significant influence on the fault basins in terms of accommodation space, deposition rate, and depositional facies zones. In this study, the tectonic deformation characteristics and the tectonic-depositional evolution of the Western Sag of the Cenozoic Liaohe Depression were investigated by comprehensive analysis of the available geological and geophysical data using the modern theory of tectonic geology and the balanced section technique. The tectonic deformation of the Cenozoic fault basin was characterized by superimposed faults and depression. In addition, there existed relatively independent but still related extensional tectonic systems and strike-slip tectonic systems. The tectonic evolution of the fault basin involved five stages, i.e., initial rifting stage (E2s4), intense faulting stage (E2s3), fault-depression transition stage (E3sl2), differential uplifting stage (E3d), and depression stage (N-Q). According to the characteristics of tectonic development and evolution of the Western Sag, the depositional evolution in the Cenozoic fault basin was divided into two stages, i.e., multi-episodic rifting filling in the Paleogene and post-rifting filling in the Neogene-Quaternary. The former rifting stage was further subdivided into four episodes with different characteristics of depositional development. The episodic faulting controlled the filling process and filling pattern of the Cenozoic Western Sag as well as the development and spatial distribution of associated depositional systems, whereas the syndepositional faults that developed in multiple stages in various tectonic positions controlled the development of depositional systems and sand bodies in the Western Sag. That is, the fault terraces on steep slopes controlled the development of sand bodies, the fault terraces on gentle slopes controlled the development of low-stand fan bodies, and the fault terraces or fault troughs in the central basin controlled the development of fluxoturbidite bodies. 展开更多
关键词 Fault basin syndepositional fault tectonic evolution depositional evolution Western Sag
下载PDF
Fluid evolution and hydrocarbon accumulation model of ultra-deep gas reservoirs in Permian Qixia Formation of northwest Sichuan Basin,SW China 被引量:3
12
作者 LI Jianzhong BAI Bin +6 位作者 BAI Ying LU Xuesong ZHANG Benjian QIN Shengfei SONG Jinmin JIANG Qingchun HUANG Shipeng 《Petroleum Exploration and Development》 CSCD 2022年第4期719-730,共12页
The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion ... The fluid evolution and reservoir formation model of the ultra-deep gas reservoirs in the Permian Qixia Formation of the northwestern Sichuan Basin are investigated by using thin section,cathodoluminescence,inclusion temperature and U-Pb isotopic dating,combined with gas source identification plates and reservoir formation evolution profiles established based on burial history,thermal history,reservoir formation history and diagenetic evolution sequence.The fluid evolution of the marine ultra-deep gas reservoirs in the Qixia Formation has undergone two stages of dolomitization and one phase of hydrothermal action,two stages of oil and gas charging and two stages of associated burial dissolution.The diagenetic fluids include ancient seawater,atmospheric freshwater,deep hydrothermal fluid and hydrocarbon fluids.The two stages of hydrocarbon charging happened in the Late Triassic and Late Jurassic–Early Cretaceous respectively,and the Middle to Late Cretaceous is the period when the crude oil cracked massively into gas.The gas reservoirs in deep marine Permian strata of northwest Sichuan feature multiple source rocks,composite transportation,differential accumulation and late finalization.The natural gas in the Permian is mainly cracked gas from Permian marine mixed hydrocarbon source rocks,with cracked gas from crude oil in the deeper Sinian strata in local parts.The scale development of paleo-hydrocarbon reservoirs and the stable and good preservation conditions are the keys to the forming large-scale gas reservoirs. 展开更多
关键词 sichuan basin northwest sichuan basin Permian Qixia Formation accumulation evolution fluid sources hydrocarbon charging gas accumulation
下载PDF
Tectonic Evolution of the Junggar Foreland Basin in the Late Carboniferous-Permian 被引量:2
13
作者 CHEN Shuping, ZHANG Yiwei, TANG Liangjie and BAI Guoping Basin and Reservoir Research Centre, University of Petroleum, Changping, Beijing 102249 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2001年第4期398-408,共11页
A comprehensive study has been carried out to subdivide and correlate the Upper Carboniferous and Permian sedimentary successions in the Junggar basin based on outcrops and drilling and geophysical data. The study res... A comprehensive study has been carried out to subdivide and correlate the Upper Carboniferous and Permian sedimentary successions in the Junggar basin based on outcrops and drilling and geophysical data. The study results, combined with geological analyses of the basin's periphery and the basement, as well as studies of the sedimentary rocks within the basin, the unconformities, tectonic geometry, kinematics and geodynamics, lead to the conclusion that the Junggar basin was characterized by the development of foreland basin systems during the Late Carboniferous and Permian. During that period, three foreland basin systems were developed: (1) the northwest foreland basin system, which trended nearly north-south from Mahu to the Chepaizi Palaeo-mountain during its early stage of development and thus it was also referred to as the west foreland basin system; (2) the Karamaili foreland basin system in the east and (3) the Northern Tianshan foreland basin system in the south. These systems are different in size, development stage and time of formation. The first two are developed earlier than the third, but they are smaller in size. All the structures in the Junggar basin have resulted from the integration and superposition of structural elements in the above three systems. In general, the development of the Junggar basin can be divided into four stages. Stage I was marked by the creation and evolution of the marginal western foreland and the peripheral Karamaili foreland basin systems during the Late Carboniferous-early Early Permian (C3P1ja). Stage II was characterized by the development of complicated foreland basin systems during the middle-late Early Permian (P1jb-P1f) when the three foreland basin systems took their shapes. Stage III was the integration stage of peripheral foreland basin systems during the Middle Permian (P2) in which steady and slow tectonic subsidence prevailed. Stage IV coincided with the shrinking of foreland basin development during the Late Permian (P3). 展开更多
关键词 Junggar basin foreland basin system tectonic evolution
下载PDF
Geological and geochemical evolution of forming of kalium-rich brine in Sichuan Basin 被引量:1
14
作者 XU Zhengqi YIN Guan +1 位作者 ZHANG Chengjiang CHEN Xuanrong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2017年第S1期140-141,共2页
1 Introduction Sichuan Basin is basically a salt brine reservoir,large closed and semi-closed artesian sedimentary basin with an area of 200,000 Km2 in southeast China.During the forming and evolution of the basin,it ... 1 Introduction Sichuan Basin is basically a salt brine reservoir,large closed and semi-closed artesian sedimentary basin with an area of 200,000 Km2 in southeast China.During the forming and evolution of the basin,it has been affected by 展开更多
关键词 In Ba area Geological and geochemical evolution of forming of kalium-rich brine in sichuan basin
下载PDF
Geological characteristics of the southern segment of the Late Sinian–Early Cambrian Deyang-Anyue rift trough in Sichuan Basin, SW China 被引量:2
15
作者 LI Rong WANG Yongxiao +4 位作者 WANG Zecheng XIE Wuren LI Wenzheng GU Mingfeng LIANG Zirui 《Petroleum Exploration and Development》 SCIE 2023年第2期321-333,共13页
Based on the latest drilling, seismic and field outcrop data, the geological characteristics(e.g. strata, development and sedimentary evolution) of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue... Based on the latest drilling, seismic and field outcrop data, the geological characteristics(e.g. strata, development and sedimentary evolution) of the southern segment of the Late Sinian–Early Cambrian Deyang–Anyue rift trough in the Sichuan Basin are analyzed. First, the strata in the southern segment are complete. The first to second members of Dengying Formation(Deng 1 + Deng 2) are found with relatively stable thickness(400–550 m), and the third to fourth members(Deng 3+ Deng 4) show great thickness difference between the marginal trough and the inner trough, which is up to 250 m. The Cambrian Maidiping Formation and Qiongzhusi Formation in southern Sichuan Basin are relatively thin, with the thickness changing greatly and frequently. Second, the Deyang–Anyue rift trough extended southward during the Deng 4 period, affecting southern Sichuan Basin. Compared to the middle and northern segments of the rift trough, the southern segment is generally wide, gentle and shallow, with multiple steps, and alternating uplifts and sags, which are distributed in finger shape. Third, the Deng 1 + Deng 2 in southern Sichuan Basin records the dominance of carbonate platform and unobvious sedimentary differentiation, and the Deng 4 exhibits obvious sedimentary differentiation, namely, basin–slope–secondary slope–slope–secondary slope–platform margin–restricted platform, from the inner trough to the marginal trough. Fourth, the rift trough in southern Sichuan Basin has evolved in four stages: stabilization of Deng 1–Deng 2, initialization of Deng 3–Deng 4, filling of Maidiping–Qiongzhusi, and extinction of Canglangpu Formation. 展开更多
关键词 Deyang-Anyue rift trough geological characteristics secondary slope development and evolution Cambrian Maidiping Formation Cambrian Qiongzhusi Formation Sinian Dengying Formation sichuan basin
下载PDF
TECTONIC EVOLUTION AND FORMATION OF OIL AND GAS POOLS OF THE BASINS BEARING OIL AND GAS IN CHINA
16
《Geotectonica et Metallogenia》 1994年第Z2期118-119,共2页
关键词 GAS tectonic evolution AND FORMATION OF OIL AND GAS POOLS OF THE basinS BEARING OIL AND GAS IN CHINA
下载PDF
TECTONIC EVOLUTION OF THE EOCENE DROSH-VOLCANO-SEDIMENTARY BASIN IN NW-KOHISTAN ISLAND ARC TERRANE, HINDUKUSH, N. PAKISTAN 被引量:1
17
作者 M. Asif Khan\+1, M. Haleem Khan\+1, Tazeem Tahirkheli\+1, P.J. Treloar\+2, M. J. Pettterson\+3 2 School of Geological Sciences, Kingston University, UK 3 British 《地学前缘》 EI CAS CSCD 2000年第S1期180-181,共2页
In NW Himalayas, the suture zone between the collided Indian and the Karakoram plates is occupied by crust of the Cretaceous Kohistan Island\|Arc Terrane [1] . Late Cretaceous (about 90Ma) accretion with the southern ... In NW Himalayas, the suture zone between the collided Indian and the Karakoram plates is occupied by crust of the Cretaceous Kohistan Island\|Arc Terrane [1] . Late Cretaceous (about 90Ma) accretion with the southern margin of the Karakoram Plate at the site of the Shyok Suture Zone turned Kohistan to become an Andean\|type margin. The Neotethys was completely subducted at the southern margin of Kohistan by Early Tertiary, leading to collision between Kohistan and continental crust of the Indian plate at the site of the Main mantle thrust.More than 80% of the Kohistan terrane comprises plutonic rocks of (1) ultramafic to gabbroic composition forming the basal crust of the intra\|oceanic stage of the island arc, and (2) tonalite\|granodiorite\|granite composition belong to the Kohistan Batholith occupying much of the intermediate to shallow crust of the terrane mostly intruded in the Andean\|type margin stage [2] . Both these stages of subduction\|related magmatism were associated with volcanic and sedimentary rocks formed in Late Cretaceous and Early Tertiary basins. This study addresses tectonic configuration of Early Tertiary Drosh basin exposed in NW parts of the Kohistan terrane, immediately to the south of the Shyok Suture Zone. 展开更多
关键词 tectonic evolution basin EOCENE Drosh VOLCANO sedimentary North Pakistan
下载PDF
Sedimentary architecture and distribution of intra-platform shoal in sequence framework of Permian Changxing Formation in central Sichuan Basin,SW China
18
作者 WANG Dong LIU Hong +7 位作者 TANG Song BAI Jinhao ZHOU Gang LI Zhengyong LIANG Feng TAN Xiucheng GENG Chao YANG Ying 《Petroleum Exploration and Development》 SCIE 2023年第2期388-403,共16页
Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary... Based on the comprehensive analysis of core, thin section, logging and seismic data, this study carried out the identification and comparison of Permian Changxing Formation sequences, clarified the typical sedimentary architectures of intra-platform shoal, investigated the vertical and horizontal development and distribution of intra-platform shoal in each sequence, and thus established the sedimentary evolution model of shoal body. The study results are reflected in four aspects.First, there are two complete third-order sequences(SQ1 and SQ2) in Changxing Formation in central Sichuan Basin. SQ1 is generally thick in the north and thin in the south, and SQ2 shows a thickness differentiation trend of “two thicknesses and three thinnesses”. Second, the Changxing Formation in central Sichuan Basin mainly develops intra-platform shoal, inter-shoal sea and intra-platform depression subfacies. In the vertical direction, the intra-platform shoal mainly presents two typical sedimentary sequences: stable superposed and high-frequency interbedded. Third, the stable superimposed sedimentary sequence is developed in the shoal belt at the edge of intra-platform depression, which is composed of two shoal-forming periods and located in the highstand systems tracts(HSTs) of SQ1 and SQ2. The high-frequency interbedded sedimentary sequence is developed in the southern shoal belt of intra-platform depression, which is composed of four shoal-forming periods and mainly located in the HST of SQ2. Fourth, during the SQ1 deposition, the intra-platform shoal was mainly developed at the edge of the intra-platform depression on the north side of the study area, and the inter-shoal sea subfacies was mainly developed on the south side. During the SQ2 deposition, the intra-platform shoal was widely developed in the area, forming two nearly parallel intra-platform shoal belts. The study results provide direction and ideas for exploration of Changxing Formation intra-platform shoal reservoirs in central Sichuan Basin. 展开更多
关键词 sichuan basin Permian Changxing Formation intra-platform shoal sequence stratigraphic framework typical sedimentary sequence sedimentary evolution model
下载PDF
Tectonic Evolution and Geological Characteristics of Hydrocarbon Reservoirs in Marine Mesozoic-Paleozoic Strata in the South Yellow Sea Basin 被引量:12
19
作者 YUAN Yong CHEN Jianwen +3 位作者 ZHANG Yuxi LIANG Jie ZHANG Yinguo ZHANG Penghui 《Journal of Ocean University of China》 SCIE CAS CSCD 2018年第5期1075-1090,共16页
The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor... The South Yellow Sea Basin is the main body of the lower Yangtze area in which marine Mesozoic–Paleozoic strata are widely distributed.The latest geophysical data were used to overcome the limitation of previous poor-quality deep data.Meanwhile,the geological characteristics of hydrocarbon reservoirs in the marine Mesozoic–Paleozoic strata in the South Yellow Sea Basin were analyzed by comparing the source rocks and the reservoir and utilizing drilling and outcrop data.It is believed that the South Yellow Sea Basin roughly underwent six evolutionary stages:plate spreading,plate convergence,stable platform development,foreland basin development,faulted basin development,and depression basin development.The South Yellow Sea Basin has characteristics of a composite platform-fault depression geological structure,with a half-graben geological structure and with a ‘sandwich structure' in the vertical direction.Four sets of hydrocarbon source rocks developed – the upper Permian Longtan–Dalong formation,the lower Permian Qixia formation,the lower Silurian Gaojiabian formation,and the lower Cambrian Hetang formation/Mufushan formation,giving the South Yellow Sea Basin relatively good hydrocarbon potential.The carbonate is the main reservoir rock type in the South Yellow Sea area,and there are four carbonate reservoir types:porous dolomitic,reef-bank,weathered crust,and fractured.There are reservoir-forming horizons similar to the typical hydrocarbon reservoirs in the Yangtze land area developed in the South Yellow Sea,and there are three sets of complete source-reservoir-cap rock assemblages developed in the marine strata,with very good hydrocarbon potential. 展开更多
关键词 中生代 古生代 南方 水库 海盆 地质 海洋 特征
下载PDF
Porosity Formation and Evolution of the Deeply Buried Lower Triassic Feixianguan Formation, Puguang Gas Field, NE Sichuan Basin, China 被引量:2
20
作者 Xuefeng Zhang Tonglou Guo +2 位作者 Bo Liu Xiaoyue Fu Shuanglin Wu 《Open Journal of Geology》 2013年第4期300-312,共13页
The deeply buried shoal dolomite reservoirs of the Lower Triassic Feixianguan Formation, giant Puguang Gas Field, NE Sichuan Basin, are exceptionally porous. The influences of diageneses on pore evolution are studied.... The deeply buried shoal dolomite reservoirs of the Lower Triassic Feixianguan Formation, giant Puguang Gas Field, NE Sichuan Basin, are exceptionally porous. The influences of diageneses on pore evolution are studied. Through petrologic investigation, diagenetic phases are divided into four stages, i.e., near-surface, pre-oil window, oil window, and gas window. The Adobe Photoshop system is used to quantify the rock texture components, porosity constitutions and the influences of diageneses on reservoir porosity. Porosity evolution curves are quantitatively recovered. The Feixianguan reservoir porosities are mainly created by early meteoric dissolution, dolomitization, and organic acids dissolution. Dissolution during deep burial is insignificant. Pores are formed in near-surface and pre-oil window stages and effectively preserved till present. This result may be of great significance to the further exploration of deeply buried carbonate reservoirs not only in NE Sichuan Basin, but also around the world. 展开更多
关键词 Porosity evolution DIAGENESIS Lower TRIASSIC Feixianguan Formation Puguang Gas Field sichuan basin
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部