期刊文献+
共找到94,782篇文章
< 1 2 250 >
每页显示 20 50 100
Phanerozoic Tectonic Evolution,Metallogenesis and Formation of Mineral Systems in China
1
作者 CHEN Xuanhua HAN Lele +6 位作者 DING Weicui XU Shenglin TONG Ying ZHANG Yiping LI Bing ZHOU Qi WANG Ye 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第4期819-842,共24页
The continental Asia is mainly composed of three major tectonic regimes,the Tethys,Paleo Asian Ocean,and West Pacific.It underwent multi-stage plate convergences,ocean-continent transformations,and subductions,collisi... The continental Asia is mainly composed of three major tectonic regimes,the Tethys,Paleo Asian Ocean,and West Pacific.It underwent multi-stage plate convergences,ocean-continent transformations,and subductions,collisions and/or collages,and post collisional(orogenic)extensions in Phanerozoic.Tectonic evolution of the Asia brings up a unique fault system and tectonic geomorphological features in the China's Mainland.Also,it provides a geodynamic background for the formation and evolution of metallogeneses and mineral systems,resulting in nonuniform distribution of tectono-metallogenic systems and metallogenic belts.The spatiotemporal distribution of mineral deposits in China and adjacent areas exhibits periodic variation under controlling of the full life Wilson cycle and tectonic evolution,forming the plate convergence-related mineral system in East Asia.Porphyry Cu deposits are mainly related to compressional systems in Paleozoic and early Mesozoic,and more closely related to post-collision extensional settings in late Mesozoic and Cenozoic.Orogenic Au deposits mainly formed in post-orogeny extensional setting.Alkaline rock related rare earth element deposits formed mainly at margins of the North China and Yangtze cratons.Granite-pegmatite Li and other rare metal deposits formed mainly in early Mesozoic,related to Indosinian post-orogeny extension.Tectono-metallogenic systems provide important basis for the prospecting of mineral resources. 展开更多
关键词 tectonic evolution geodynamic system post-orogenic extension METALLOGENESIS tectono-metallogenic system East Asia
下载PDF
Tectonic Evolution and Lithospheric Structure of the Beishan Orogen:Insights from Magnetotelluric Studies
2
作者 CHEN Chutong ZHU Keying +4 位作者 LYU Binbin ZHANG Lingxiao YUAN Weiheng WANG Bin GUO Chang’an 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第S01期6-9,共4页
The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth i... The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth in Central Asia.This orogen developed through the episodic amalgamation and accretion of continental margin arcs,island arcs,ophiolites,and accretionary wedges,undergoing a complex process of accretion and evolution.Since the Phanerozoic,the Beishan orogen has experienced multiple phases of magmatic and collision events.The intricate distribution of magmatic arc rocks has obscured the complete basement traces,and the spatial superposition of multiple magmatic arc phases has complicated the study of its evolutionary history. 展开更多
关键词 magnetotelluric survey three-dimension inversion tectonic evolution Beishan Orogen
下载PDF
Study on the evolution of solid–liquid–gas in multi-scale pore methane in tectonic coal
3
作者 Junjie Cai Xijian Li +1 位作者 Hao Sui Honggao Xie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期122-131,共10页
The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex... The rich accumulation of methane(CH_(4))in tectonic coal layers poses a significant obstacle to the safe and efficient extraction of coal seams and coalbed methane.Tectonic coal samples from three geologically complex regions were selected,and the main results obtained by using a variety of research tools,such as physical tests,theoretical analyses,and numerical simulations,are as follows:22.4–62.5 nm is the joint segment of pore volume,and 26.7–100.7 nm is the joint segment of pore specific surface area.In the dynamic gas production process of tectonic coal pore structure,the adsorption method of methane molecules is“solid–liquid adsorption is the mainstay,and solid–gas adsorption coexists”.Methane stored in micropores with a pore size smaller than the jointed range is defined as solid-state pores.Pores within the jointed range,which transition from micropore filling to surface adsorption,are defined as gaseous pores.Pores outside the jointed range,where solid–liquid adsorption occurs,are defined as liquid pores.The evolution of pore structure affects the methane adsorption mode,which provides basic theoretical guidance for the development of coal seam resources. 展开更多
关键词 tectonic coal Multiscale pore structure Methane adsorption Micropore filling MONOLAYER Molecular simulation
下载PDF
Tectonic evolution and accumulation characteristics of Carboniferous shale gas in Yadu-Ziyun-Luodian aulacogen, Guizhou Province, South China 被引量:2
4
作者 Kun Yuan Wen-hui Huang +5 位作者 Ting Wang Shi-zhen Li Xiang-can Sun Xin-xin Fang Jun-ping Xiao Jun Guo 《China Geology》 CAS CSCD 2023年第4期646-659,共14页
The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zon... The Yadu-Ziyun-Luodian aulacogen(YZLA) developed into being NW-trending in the Late Paleozoic,and was considered as an important passive continental margin aulacogen in Guizhou Province, South China. This tectonic zone is considered a large intracontinental thrust-slip tectonic unit, which has undergone a long period of development. It was ultimately determined in the Yanshanian, where the typical Upper Paleozoic marine shales were deposited. In 2021, Well QSD-1 was deployed in the Liupanshui area at the northwest margin of the aulacogen, and obtained a daily shale gas flow of 11011 m3in the Carboniferous Dawuba Formation. It thus achieved a breakthrough in the invesgation of shale gas in the Lower Carboniferous in South China, revealing relatively good gas-bearing properties and broad exploration prospects of the aulacogen. Being different from the Lower Paleozoic strata in the Sichuan Basin and the Yichang area of the Middle Yangtze, the development of the Carboniferous Dawuba Formation in the aulacogen exhibits the following characteristics:(1) The Lower Carboniferous shale is thick and widely distributed, with interbedded shale and marlstone of virous thickness;(2) The total organic carbon(TOC) content of the shale in the Dawuba Formation ranges from 1% to 5%, with an average of 2%, and the thermal maturity of organic matter(Ro) varies from 1% to 4%, with an average of2.5%, indicating good hydrocarbon generation capacity;(3) The main shale in the aulacogen was formed during the fault subsidence stage from the Middle Devonian to the Early Permian. Although the strong compression and deformation during the late Indosinian-Himalayan played a certain role in destroying the formed shale gas reservoirs, comparative analysis suggests that the area covered by the current Triassic strata has a low degree of destruction. It therefore provides good conditions for shale gas preservation,which can be regarded as a favorable area for the next exploration. 展开更多
关键词 Shale gas AULACOGEN CARBONIFEROUS Shale and marlstone Organic carbon Organic matter Hydrocarbon generation capacity tectonic evolution Accumulation characteristics
下载PDF
Tectonic features,genetic mechanisms and basin evolution of the eastern Doseo Basin,Chad 被引量:1
5
作者 GAO Huahua DU Yebo +7 位作者 WANG Lin GAO Simin HU Jie BAI Jianfeng MA Hong WANG Yuhua ZHANG Xinshun LIU Hao 《Petroleum Exploration and Development》 SCIE 2023年第5期1151-1166,共16页
The features of the unconformity,fault and tectonic inversion in the eastern Doseo Basin,Chad,were analyzed,and the genetic mechanisms and basin evolution were discussed using seismic and drilling data.The following r... The features of the unconformity,fault and tectonic inversion in the eastern Doseo Basin,Chad,were analyzed,and the genetic mechanisms and basin evolution were discussed using seismic and drilling data.The following results are obtained.First,four stratigraphic unconformities,i.e.basement(Tg),Mangara Group(T10),lower Upper Cretaceous(T5)and Cretaceous(T4),four faulting stages,i.e.Barremian extensional faults,Aptian–Coniacian strike-slip faults,Campanian strike-slip faults,and Eocene strike-slip faults,and two tectonic inversions,i.e.Santonian and end of Cretaceous,were developed in the Doseo Basin.Second,the Doseo Basin was an early failed intracontinental passive rift basin transformed by the strike-slip movement and tectonic inversion.The initial rifting between the African and South American plates induced the nearly N-S stretching of the Doseo Basin,giving rise to the formation of the embryonic Doseo rift basin.The nearly E-W strike-slip movement of Borogop(F1)in the western section of the Central African Shear Zone resulted in the gradual cease of the near north-south rifting and long-term strike-slip transformation,forming a dextral transtension fault system with inherited activity but gradually weakened in intensity(interrupted by two tectonic inversions).This fault system was composed of the main shear(F1),R-type shear(F2-F3)and P-type shear(F4-F5)faults,with the strike-slip associated faults as branches.The strike-slip movements of F1 in Cretaceous and Eocene were controlled by the dextral shear opening of the equatorial south Atlantic and rapid expanding of the Indian Ocean,respectively.The combined function of the strike-slip movement of F1 and the convergence between Africa and Eurasia made the Doseo Basin underwent the Santonian dextral transpressional inversion characterized by intensive folding deformation leading to the echelon NE-SW and NNE-SSW nose-shaped uplifts and unconformity(T5)on high parts of the uplifts.The convergence between Africa and Eurasia caused the intensive tectonic inversion of Doseo Basin at the end of Cretaceous manifesting as intensive uplift,denudation and folding deformation,forming the regional unconformity(T4)and superposing a nearly E-W structural configuration on the Santonian structures.Third,the Doseo Basin experienced four evolutional stages with the features of short rifting and long depression,i.e.Barremian rifting,Aptian rifting–depression transition,Albian–Late Cretaceous depression,and Cenozoic extinction,under the control of the tectonic movements between Africa and its peripheral plates. 展开更多
关键词 Doseo Basin CRETACEOUS UNCONFORMITY strike-slip fault tectonic inversion genetic mechanism basin evolution
下载PDF
Extensional structures of the Nan'an Basin in the rifting tip of the South China Sea: Implication for tectonic evolution of the southwestern continental margin
6
作者 Shi-Guo Wu Li Zhang +5 位作者 Zhen-Yu Lei Xing Qian Shuai-Bing Luo Xiang-Yang Lu Thomas Lüdmann Lei Tian 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期128-140,共13页
Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South C... Nan'an Basin is a giant hydrocarbon basin,but its tectonic division scheme and associated fault systems has not been well understood.Based on newly acquired seismic data from the southwestern margin of the South China Sea,this study analyzed the structural units,tectonic feature and geodynamics of the sedimentary basin.The new data suggests that the Nan0 an Basin is a rift basin oriented in the NE-SW direction,rather than a pull-apart basin induced by strike-slip faults along the western margin.The basin is a continuation of the rifts in the southwest South China Sea since the late Cretaceous.It continued rifting until the middle Miocene,even though oceanic crust occurred in the Southwest Subbasin.However,it had no transfer surface at the end of spreading,where it was characterized by a late middle Miocene unconformity(reflector T3).The Nan'an Basin can be divided into eight structural units by a series of NE-striking faults.This study provides evidences to confirm the relative importance and interplay between regional strike-slips and orthogonal displacement during basin development and deformation.The NE-SW-striking dominant rift basin indicates that the geodynamic drivers of tectonic evolution in the western margin of the South China Sea did not have a large strike-slip mechanism.Therefore,we conclude that a large strike-slip fault system did not exist in the western margin of the South China Sea. 展开更多
关键词 Sedimentary basin Seismic sequence RIFTING tectonic evolution South China Sea
下载PDF
Deformable Catalytic Material Derived from Mechanical Flexibility for Hydrogen Evolution Reaction 被引量:2
7
作者 Fengshun Wang Lingbin Xie +7 位作者 Ning Sun Ting Zhi Mengyang Zhang Yang Liu Zhongzhong Luo Lanhua Yi Qiang Zhao Longlu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期287-311,共25页
Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent year... Deformable catalytic material with excellent flexible structure is a new type of catalyst that has been applied in various chemical reactions,especially electrocatalytic hydrogen evolution reaction(HER).In recent years,deformable catalysts for HER have made great progress and would become a research hotspot.The catalytic activities of deformable catalysts could be adjustable by the strain engineering and surface reconfiguration.The surface curvature of flexible catalytic materials is closely related to the electrocatalytic HER properties.Here,firstly,we systematically summarized self-adaptive catalytic performance of deformable catalysts and various micro–nanostructures evolution in catalytic HER process.Secondly,a series of strategies to design highly active catalysts based on the mechanical flexibility of lowdimensional nanomaterials were summarized.Last but not least,we presented the challenges and prospects of the study of flexible and deformable micro–nanostructures of electrocatalysts,which would further deepen the understanding of catalytic mechanisms of deformable HER catalyst. 展开更多
关键词 Deformable catalytic material Micro-nanostructures evolution Mechanical flexibility Hydrogen evolution reaction
下载PDF
Petrogenesis and Tectonic Implications of the Early Triassic Nianzi Adakitic Granite Unit in the Yanshan Fold and Thrust Belt:New Constraints from U-Pb Geochronology and Sr-Nd-Hf Isotopes
8
作者 ZHANG Huijun WU Chu +5 位作者 HE Fubing WANG Biren CUI Yubin LIU Zhenghua YOU Shina DONG Jing 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第1期50-66,共17页
The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thru... The Nianzi granite unit,which includes the Nianzi,Xiaolianghou and Xiawopu granitic intrusions,is a significant component of the northern part of the North China Craton(NCC)and is situated in the Yanshan fold and thrust belt(YFTB).However,there is still debate regarding the tectonic evolutionary history of the YFTB during the late Permian to Triassic period,specifically regarding the timing of subduction and collision between the NCC and the Paleo-Asian Ocean.The Nianzi granite unit exhibits unique petrological,geochronological and geochemical signatures that shed light on the tectonic evolutionary history of the YFTB.This study presents detailed petrology,whole-rock geochemistry,together with Sr-Nd isotopic,zircon U-Pb dating and Lu-Hf isotopic data of the granites within the Nianzi granite unit.Our findings demonstrate that the granites primarily consist of subhedral K-feldspar,plagioclase,quartz,minor biotite and hornblende,with accessory titanite,apatite,magnetite and zircon.Zircon U-Pb dating indicates that the Xiaolianghou granite was emplaced at 247.5±0.62 Ma.Additionally,the adakitic characteristics of the Nianzi,Xiawopu and Xiaolianghou granitic intrusions,such as high Sr and Ba contents and high ratios of Sr/Y and(La/Yb)N,combined with negative Sr-Nd and Lu-Hf isotopes(87Sr/86Sr)i=0.705681–0.7057433,εNd(t)=−21.98 to−20.97,zirconεHf(t)=−20.26 to−9.92,as well as the I-type granite features of high SiO_(2),Na_(2)O and K_(2)O/Na_(2)O ratios,enriched Rb,K,Sr and Ba,along with depleted Th,U,Nb,Ta,P and Ti,suggest that the Nianzi granitic unit was mainly derived from the partial melting of a thickened lower crust containing hydrous,calc-alkaline to high-K calc-alkaline,mafic to intermediate metamorphic rocks.In light of these parameters,we further integrate our data with previous studies and conclude that the Nianzi granitic unit was generated in a post-collisional extensional environment during the Early Triassic. 展开更多
关键词 tectonic evolution zircon geochronology Sr-Nd-Hf isotopes Nianzi granite unit Yanshan fold and thrust belt
下载PDF
Magmatic-tectonic response of the South China Craton to the Paleo-Pacific subduction during the Triassic:a new viewpoint based on Well NK-1
9
作者 Chan WANG Hao LIU +7 位作者 Gang LI Zhen SUN Tingting GONG Li MIAO Xiaowei ZHU Yunying ZHANG Weihai XU Wen YAN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期58-89,共32页
The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To ... The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To reveal the essence of western Paleo-Pacific subduction during the Triassic period,Well NK-1 in this block was selected for petrographic study,and published research data from other cooperative teams were compared.A double-cycle pattern of basic to neutral magmatic volcanism was established,and 36 lithological rhythmic layers and representative cryptoexplosive breccia facies and welded tuff bands were identified.Combined with a reanalysis of published geochronological data,geochemical elements,and isotope geochemistry,we found that the rock assemblages could be divided into an intermediate-acid dacite(DA)series(SiO_(2)>65%)and basaltic(BA)series(Co<40μg/g),which was formed during the early Late Triassic((218.6±3.2)–(217.9±3.5)Ma).BA exhibits obvious calc-alkaline island-arc magmatic properties:(^(87)Sr/^(86)Sr)_i ratio ranging 0.70377–0.71118(average:0.70645),^(147)Sm/^(144)Nd ratio ranging 0.119–0.193(average:0.168),and chondrite-normalized rare earth element(REE)curves being flat,while DA exhibits remarkable characteristics of subducted island-arc andesitic magma:(^(87)Sr/^(86)Sr)_i ratio(0.70939–0.71129;average:0.71035),εNd(t)value(-6.2–-4.8;average:-5.6)andε_(Hf)(t)value(-2.9–-1.7,average:-2.2)show obvious crust-mantle mixing characteristics.BA and DA reveal typical characteristics of island-arc magma systems and typeⅡenriched mantle(EM-Ⅱ)magma.BA magma was likely resulted from the process whereby the continental crust frontal accretionary wedge was driven by the Paleo-Pacific slab subduction into the deep and began to melt,resulting in a large amount of melt(fluid)joined the asthenosphere on the side of the continental margin.In contrast,DA magma was likely resulted from the process whereby the plate front was forced to bend with increasing subduction distance,which triggered the upwelling of the asthenosphere near the continent and subsequently led to the partial melting of the lithospheric mantle and lower crust due to continuous underplating.The lithospheric thinning environment in the study area at the end of Triassic created suitable conditions for the separation between the NB and SCC,which provided an opportunity for the formation of the early intracontinental rift during the later expansion of the South China Sea(SCS). 展开更多
关键词 Paleo-Pacific tectonic domain tectonic evolution rift volcanic rock Nansha Block South China Craton
下载PDF
Mg/MgO interfaces as efficient hydrogen evolution cathodes causing accelerated corrosion of additive manufactured Mg alloys:A DFT analysis 被引量:1
10
作者 Man-Fai Ng Kai Xiang Kuah +1 位作者 Teck Leong Tan Daniel John Blackwood 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期110-119,共10页
The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide incl... The corrosion rates of additive-manufactured Mg alloys are higher than their as-cast counterparts,possibly due to increased kinetics for the hydrogen evolution reaction on secondary phases,which may include oxide inclusions.Scanning Kelvin Probe Force Microscopy demonstrated that MgO inclusions could act as cathodes for Mg corrosion,but their low conductivity likely precludes this.However,the density of state calculations through density functional theory using hybrid HSE06 functional revealed overlapping electronic states at the Mg/MgO interface,which facilitates electron transfers and participates in redox reactions.Subsequent determination of the hydrogen absorption energy at the Mg/MgO interface reveals it to be an excellent catalytic site,with HER being found to be a factor of 23x more efficient at the interface than on metallic Mg.The results not only support the plausibility of the Mg/MgO interface being an effective cathode to the adjacent anodic Mg matrix during corrosion but also contribute to the understanding of the enhanced cathodic activities observed during the anodic dissolution of magnesium. 展开更多
关键词 MAGNESIUM Magnesium oxide Interface Hydrogen evolution DFT
下载PDF
Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction 被引量:1
11
作者 Jing Jin Xinyao Wang +4 位作者 Yang Hu Zhuang Zhang Hongbo Liu Jie Yin Pinxian Xi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期14-24,共11页
Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performan... Ef fective and robust catalyst is the core of water splitting to produce hydrogen.Here, we report an anionic etching method to tailor the sulfur vacancy(VS) of NiS_(2) to further enhance the electrocatalytic performance for hydrogen evolution reaction(HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS_(2)-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential(68 m V) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy(ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S-H* peak of the Ni S_(2)-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the Ni S_(2)-VS 5.9% has the optimal |ΔG^(H*)| of 0.17 e V. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy. 展开更多
关键词 Hydrogen evolution reaction S vacancies NANOSHEET H Adsorption
下载PDF
Valence electronic engineering of superhydrophilic Dy-evoked Ni-MOF outperforming RuO_(2) for highly efficient electrocatalytic oxygen evolution 被引量:1
12
作者 Zhiyang Huang Miao Liao +6 位作者 Shifan Zhang Lixia Wang Mingcheng Gao Zuyang Luo Tayirjan Taylor Isimjan Bao Wang Xiulin Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期244-252,I0007,共10页
Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy ... Tackling the problem of poor conductivity and catalytic stability of pristine metal-organic frameworks(MOFs) is crucial to improve their oxygen evolution reaction(OER) performance.Herein,we introduce a novel strategy of dysprosium(Dy) doping,using the unique 4f orbitals of this rare earth element to enhance electrocatalytic activity of MOFs.Our method involves constructing Dy-doped Ni-MOF(Dy@Ni-MOF) nanoneedles on carbon cloth via a Dy-induced valence electronic perturbation approach.Experiments and density functional theory(DFT) calculations reveal that Dy doping can effectively modify the electronic structure of the Ni active centers and foster a strong electronic interaction between Ni and Dy.The resulting benefits include a reduced work function and a closer proximity of the d-band center to the Fermi level,which is conducive to improving electrical conductivity and promoting the adsorption of oxygen-containing intermediates.Furthermore,the Dy@Ni-MOF achieves superhydrophilicity,ensuring effective electrolyte contact and thus accelerating reaction kinetics,Ex-situ and in-situ analysis results manifest Dy_(2)O_(3)/NiOOH as the actual active species.Therefore,Dy@Ni-MOF shows impressive OER performance,significantly surpassing Ni-MOF.Besides,the overall water splitting device with Dy@NiMOF as an anode delivers a low cell voltage of 1.51 V at 10 mA cm^(-2) and demonstrates long-term stability for 100 h,positioning it as a promising substitute for precious metal catalysts. 展开更多
关键词 Dy@Ni-MOF Dy incorporation Electronic interaction SUPERHYDROPHILICITY Oxygen evolution reaction
下载PDF
Microwave shock motivating the Sr substitution of 2D porous GdFeO_(3) perovskite for highly active oxygen evolution 被引量:1
13
作者 Jinglin Xian Huiyu Jiang +10 位作者 Zhiao Wu Huimin Yu Kaisi Liu Miao Fan Rong Hu Guangyu Fang Liyun Wei Jingyan Cai Weilin Xu Huanyu Jin Jun Wan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期232-241,I0006,共11页
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ... The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite. 展开更多
关键词 2D materials PEROVSKITE MICROWAVE ELECTROCATALYSIS Oxygen evolution reaction
下载PDF
Optimizing 3d spin polarization of CoOOH by in situ Mo doping for efficient oxygen evolution reaction 被引量:1
14
作者 Zhichao Jia Yang Yuan +6 位作者 Yanxing Zhang Xiang Lyu Chenhong Liu Xiaoli Yang Zhengyu Bai Haijiang Wang Lin Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期236-244,共9页
Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will ben... Transition-metal oxyhydroxides are attractive catalysts for oxygen evolution reactions(OERs).Further studies for developing transition-metal oxyhydroxide catalysts and understanding their catalytic mechanisms will benefit their quick transition to the next catalysts.Herein,Mo-doped CoOOH was designed as a high-performance model electrocatalyst with durability for 20 h at 10 mAcm−2.Additionally,it had an overpotential of 260 mV(glassy carbon)or 215 mV(nickel foam),which was 78 mV lower than that of IrO_(2)(338 mV).In situ,Raman spectroscopy revealed the transformation process of CoOOH.Calculations using the density functional theory showed that during OER,doped Mo increased the spin-up density of states and shrank the spin-down bandgap of the 3d orbits in the reconstructed CoOOH under the electrochemical activation process,which simultaneously optimized the adsorption and electron conduction of oxygen-related intermediates on Co sites and lowered the OER overpotentials.Our research provides new insights into the methodical planning of the creation of transition-metal oxyhydroxide OER catalysts. 展开更多
关键词 ELECTROCATALYST in situ Raman Mo-doped CoOOH oxygen evolution reaction
下载PDF
The sedimentary record of the Sanshui Basin:Implication to the Late Cretaceous tectonic evolution in the northern margin of South China Sea
15
作者 Zhe ZHANG Nianqiao FANG Zhen SUN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2023年第2期532-549,共18页
Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,San... Whether the South China continental margin had shifted from active subduction to passive extension in the Late Cretaceous remains controversial.Located in the northernmost of the South China Sea continental margin,Sanshui Basin developed continuous stratigraphy from Lower Cretaceous to Eocene and provides precious outcrops to study the regional tectonic evolution during the Cretaceous.Therefore,we conducted field observations,petrology,clay mineralogy,geochemistry,and detrital zircon chronology analyses of sedimentary rocks from the Upper Cretaceous Sanshui Formation in Sanshui Basin.Results suggest that the Sanshui Basin is characterized as an intermoutane basin with multiple provenances,strong hydrodynamic environment,and proximal accumulation in the Late Cretaceous.An angular unconformity at the boundary between the Lower and Upper Cretaceous was observed in the basin.The sedimentary facies of the northern basin changed from lacustrine sedimentary environment in the Early Cretaceous to alluvial facies in the Late Cretaceous.The zircon U-Pb ages of granitic gravelly sandstone from Sanshui Formation prominently range from 100 Ma to 300 Ma,which is close to the deposition age of Sanshui Formation.The major and trace elements of the Late Cretaceous sedimentary samples show characteristics of active continental margin,and are different from the Paleogene rifting sequences.Hence,we propose that the northern South China Sea margin underwent an intense tectonic uplift at the turn of the Early and Late Cretaceous(around 100 Ma).Afterward,the northern South China Sea margin entered a wide extension stage in the Late Cretaceous(~100 to~80 Ma).This extensional phase is related to the back-arc extension in the active continental margin environment,which is different from the later passive rifting in the Cenozoic.The transition from active subduction to passive extension in the northern South China Sea may occur between the late Late Cretaceous and the Paleogene. 展开更多
关键词 continental margin South China Sea Sanshui Basin Late Cretaceous tectonic transition
下载PDF
High-speed penetration of ogive-nose projectiles into thick concrete targets:Tests and a projectile nose evolution model 被引量:1
16
作者 Xu Li Yan Liu +4 位作者 Junbo Yan Zhenqing Shi Hongfu Wang Yingliang Xu Fenglei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期553-571,共19页
The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytic... The majority of the projectiles used in the hypersonic penetration study are solid flat-nosed cylindrical projectiles with a diameter of less than 20 mm.This study aims to fill the gap in the experimental and analytical study of the evolution of the nose shape of larger hollow projectiles under hypersonic penetration.In the hypersonic penetration test,eight ogive-nose AerMet100 steel projectiles with a diameter of 40 mm were launched to hit concrete targets with impact velocities that ranged from 1351 to 1877 m/s.Severe erosion of the projectiles was observed during high-speed penetration of heterogeneous targets,and apparent localized mushrooming occurred in the front nose of recovered projectiles.By examining the damage to projectiles,a linear relationship was found between the relative length reduction rate and the initial kinetic energy of projectiles in different penetration tests.Furthermore,microscopic analysis revealed the forming mechanism of the localized mushrooming phenomenon for eroding penetration,i.e.,material spall erosion abrasion mechanism,material flow and redistribution abrasion mechanism and localized radial upsetting deformation mechanism.Finally,a model of highspeed penetration that included erosion was established on the basis of a model of the evolution of the projectile nose that considers radial upsetting;the model was validated by test data from the literature and the present study.Depending upon the impact velocity,v0,the projectile nose may behave as undistorted,radially distorted or hemispherical.Due to the effects of abrasion of the projectile and enhancement of radial upsetting on the duration and amplitude of the secondary rising segment in the pulse shape of projectile deceleration,the predicted DOP had an upper limit. 展开更多
关键词 High-speed penetration Concrete target EROSION Projectile nose evolution model
下载PDF
Unsaturated bi-heterometal clusters in metal-vacancy sites of 2D MoS2 for efficient hydrogen evolution 被引量:1
17
作者 Gonglei Shao Jie Xu +4 位作者 Shasha Gao Zhang Zhang Song Liu Xu Zhang Zhen Zhou 《Carbon Energy》 SCIE EI CAS CSCD 2024年第3期264-275,共12页
The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clu... The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials. 展开更多
关键词 CLUSTERS hydrogen evolution reaction metal vacancy MOS2 unsaturated heterometal
下载PDF
Carbon Emission Effects Driven by Evolution of Chinese Dietary Structure from 1987 to 2020 被引量:1
18
作者 ZHU Yuanyuan ZHANG Yan ZHU Xiaohua 《Chinese Geographical Science》 SCIE CSCD 2024年第1期181-194,共14页
Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research ob... Exploring carbon emission effects based on the evolution of residents’ dietary structure to achieve the carbon neutrality goal and mitigate climate change is an important task.This study took China as the research object(data excluding Hong Kong,Macao and Taiwan) and used the carbon emission coefficient method to quantitatively measure the food carbon emissions from 1987–2020,then analyzed the carbon emission effects under the evolution of dietary structure.The results showed that during the study period,the Chinese dietary structure gradually changed to a high-carbon consumption pattern.The dietary structure of urban residents developed to a balanced one,while that of rural residents developed to a high-quality one.During the study period,the per capita food carbon emissions and total food consumption of Chinese showed an increasing trend.The per capita food carbon emissions of residents in urban and rural showed an overall upward trend.The total food carbon emissions in urban increased significantly,while that in rural increased first and then decreased.The influence of beef and mutton on carbon emissions is the highest in dietary structure.Compared with the balanced dietary pattern,the food carbon emissions of Chinese residents had not yet reached the peak,but were evolving to a high-carbon consumption pattern. 展开更多
关键词 dietary structure structural evolution carbon emission effects carbon neutrality China
下载PDF
Tuning electronic structure of RuO_(2)by single atom Zn and oxygen vacancies to boost oxygen evolution reaction in acidic medium 被引量:1
19
作者 Qing Qin Tiantian Wang +7 位作者 Zijian Li Guolin Zhang Haeseong Jang Liqiang Hou Yu Wang Min Gyu Kim Shangguo Liu Xien Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期94-102,I0003,共10页
The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct ... The poor stability of RuO_(2)electrocatalysts has been the primary obstacles for their practical application in polymer electrolyte membrane electrolyzers.To dramatically enhance the durability of RuO_(2)to construct activity-stability trade-off model is full of significance but challenging.Herein,a single atom Zn stabilized RuO_(2)with enriched oxygen vacancies(SA Zn-RuO_(2))is developed as a promising alternative to iridium oxide for acidic oxygen evolution reaction(OER).Compared with commercial RuO_(2),the enhanced Ru–O bond strength of SA Zn-RuO_(2)by forming Zn-O-Ru local structure motif is favorable to stabilize surface Ru,while the electrons transferred from Zn single atoms to adjacent Ru atoms protects the Ru active sites from overoxidation.Simultaneously,the optimized surrounding electronic structure of Ru sites in SA ZnRuO_(2)decreases the adsorption energies of OER intermediates to reduce the reaction barrier.As a result,the representative SA Zn-RuO_(2)exhibits a low overpotential of 210 mV to achieve 10 mA cm^(-2)and a greatly enhanced durability than commercial RuO_(2).This work provides a promising dual-engineering strategy by coupling single atom doping and vacancy for the tradeoff of high activity and catalytic stability toward acidic OER. 展开更多
关键词 ELECTROCATALYST Acidic oxygen evolution reaction Electronic structure engineering DURABILITY Reaction barrier
下载PDF
Strong metal–support interaction boosts the electrocatalytic hydrogen evolution capability of Ru nanoparticles supported on titanium nitride 被引量:1
20
作者 Xin Wang Xiaoli Yang +7 位作者 Guangxian Pei Jifa Yang Junzhe Liu Fengwang Zhao Fayi Jin Wei Jiang Haoxi Ben Lixue Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期245-254,共10页
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr... Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering. 展开更多
关键词 electronic structure hydrogen evolution reaction RUTHENIUM strong metal-support interaction titanium nitride
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部