The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To ...The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To reveal the essence of western Paleo-Pacific subduction during the Triassic period,Well NK-1 in this block was selected for petrographic study,and published research data from other cooperative teams were compared.A double-cycle pattern of basic to neutral magmatic volcanism was established,and 36 lithological rhythmic layers and representative cryptoexplosive breccia facies and welded tuff bands were identified.Combined with a reanalysis of published geochronological data,geochemical elements,and isotope geochemistry,we found that the rock assemblages could be divided into an intermediate-acid dacite(DA)series(SiO_(2)>65%)and basaltic(BA)series(Co<40μg/g),which was formed during the early Late Triassic((218.6±3.2)–(217.9±3.5)Ma).BA exhibits obvious calc-alkaline island-arc magmatic properties:(^(87)Sr/^(86)Sr)_i ratio ranging 0.70377–0.71118(average:0.70645),^(147)Sm/^(144)Nd ratio ranging 0.119–0.193(average:0.168),and chondrite-normalized rare earth element(REE)curves being flat,while DA exhibits remarkable characteristics of subducted island-arc andesitic magma:(^(87)Sr/^(86)Sr)_i ratio(0.70939–0.71129;average:0.71035),εNd(t)value(-6.2–-4.8;average:-5.6)andε_(Hf)(t)value(-2.9–-1.7,average:-2.2)show obvious crust-mantle mixing characteristics.BA and DA reveal typical characteristics of island-arc magma systems and typeⅡenriched mantle(EM-Ⅱ)magma.BA magma was likely resulted from the process whereby the continental crust frontal accretionary wedge was driven by the Paleo-Pacific slab subduction into the deep and began to melt,resulting in a large amount of melt(fluid)joined the asthenosphere on the side of the continental margin.In contrast,DA magma was likely resulted from the process whereby the plate front was forced to bend with increasing subduction distance,which triggered the upwelling of the asthenosphere near the continent and subsequently led to the partial melting of the lithospheric mantle and lower crust due to continuous underplating.The lithospheric thinning environment in the study area at the end of Triassic created suitable conditions for the separation between the NB and SCC,which provided an opportunity for the formation of the early intracontinental rift during the later expansion of the South China Sea(SCS).展开更多
The continental Asia is mainly composed of three major tectonic regimes,the Tethys,Paleo Asian Ocean,and West Pacific.It underwent multi-stage plate convergences,ocean-continent transformations,and subductions,collisi...The continental Asia is mainly composed of three major tectonic regimes,the Tethys,Paleo Asian Ocean,and West Pacific.It underwent multi-stage plate convergences,ocean-continent transformations,and subductions,collisions and/or collages,and post collisional(orogenic)extensions in Phanerozoic.Tectonic evolution of the Asia brings up a unique fault system and tectonic geomorphological features in the China's Mainland.Also,it provides a geodynamic background for the formation and evolution of metallogeneses and mineral systems,resulting in nonuniform distribution of tectono-metallogenic systems and metallogenic belts.The spatiotemporal distribution of mineral deposits in China and adjacent areas exhibits periodic variation under controlling of the full life Wilson cycle and tectonic evolution,forming the plate convergence-related mineral system in East Asia.Porphyry Cu deposits are mainly related to compressional systems in Paleozoic and early Mesozoic,and more closely related to post-collision extensional settings in late Mesozoic and Cenozoic.Orogenic Au deposits mainly formed in post-orogeny extensional setting.Alkaline rock related rare earth element deposits formed mainly at margins of the North China and Yangtze cratons.Granite-pegmatite Li and other rare metal deposits formed mainly in early Mesozoic,related to Indosinian post-orogeny extension.Tectono-metallogenic systems provide important basis for the prospecting of mineral resources.展开更多
The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth i...The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth in Central Asia.This orogen developed through the episodic amalgamation and accretion of continental margin arcs,island arcs,ophiolites,and accretionary wedges,undergoing a complex process of accretion and evolution.Since the Phanerozoic,the Beishan orogen has experienced multiple phases of magmatic and collision events.The intricate distribution of magmatic arc rocks has obscured the complete basement traces,and the spatial superposition of multiple magmatic arc phases has complicated the study of its evolutionary history.展开更多
The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-roc...The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250-248 Ma,(2) granodiorites during 244-243 Ma, and(3) monzogranites and granodiorites during 232-230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250-248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244-243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing’an-Songliao composite block and the NCC. The 232-230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO;and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing’an-Songliao composite block and the NCC.展开更多
A number of E-W trending subparallel mafic dikes of diabase composition occurred in Gyangze-Kangma area,eastern Tethyan Himalaya,southern Tibet.They intruded into the Tethyan Himalaya sedimentary sequence.Whether they...A number of E-W trending subparallel mafic dikes of diabase composition occurred in Gyangze-Kangma area,eastern Tethyan Himalaya,southern Tibet.They intruded into the Tethyan Himalaya sedimentary sequence.Whether they belong to the;32 Ma Comei LIP(Zhu et al.,2009)or展开更多
The exposed area of igneous rocks in East Kunlun Mountains is very large and they made a magmatic arc belt broad in scale. The intrusive rocks are mainly of Hercynian—Indo\|Sinian cycle and less of Caledonian and Yan...The exposed area of igneous rocks in East Kunlun Mountains is very large and they made a magmatic arc belt broad in scale. The intrusive rocks are mainly of Hercynian—Indo\|Sinian cycle and less of Caledonian and Yanshanian cycle [1~2] . During the geological mapping of 1∶250000 of Donggeicuonahu area, we firstly found the evidence of intrusive rock of Jinning cycle. Intrusive rocks of Jinning cycle, whose exposed area is about 30km, are located in Waliaoga\|Shaxiong area among East Kunlun magmatic arc belt and are composed of two intrusive bodies. The rock types of Jinning cycle are mainly trondjemite and tonalite. Their wall rocks are Baishahe Group of Paleo\|Proterozoic and was intruded by Hercynian-Indo\|Sinian cycle granodiorite . The wall rock types are mainly banded amphibolite,biotite\|plagioclase schist,leptynite,leptite,banded marble and mica\|schist , their metamorphic condition is overall middle amphibole facies , partly granulite facies , tectonic deformation was mainly of flowage fold and flowage shear in middle and deep levers. Although intrusive rocks of Jinning cycle had undergone intensive metamorphism and deformation, they also preserve the intrusive appearance and are uniform in field. We can see intrusive contacted with wall rock or infolded the basic inclusions. Gneissosity is very common in intrusive rocks of Jinning cycle. Even though intensive metamorphism and deformation lead to interlude between intrusive body and wall rock, most wall rock exists in intrusive rocks as giant roof or inclusions in general, we can see intrusive contacted between intrusive body and wall rock locally. Intrusive rocks are hoar color, meso\|coarse grain lepido\|granoblastic texture , minerals are mainly plagioclase evidence to study the forming and evolution of orogeny of Jinning and Caledonian cycle.展开更多
The Kunlun Mountains is situated in the north margin of the Tibetan plateau and is one of crucial areas for unraveling the tectonic evolutionary history of the plateau and Eurasia. However, there is no widely accepted...The Kunlun Mountains is situated in the north margin of the Tibetan plateau and is one of crucial areas for unraveling the tectonic evolutionary history of the plateau and Eurasia. However, there is no widely accepted model for this area. One of the reasons is that some basic issues for the tectonic reconstruction have not been well settled, they are: (1) Is the Kunlun Mountains an ancient accretion prism, or a mini continent with old basement?(2) What is the age of the Kudi ophiolite, early Paleozoic or late Paleozoic?(3) When did the South Kunlun Block accrete to the Tarim Block?(4) Do the fifth and the forth sutures represent different oceans, or they are just the chronologically different relics of the same ocean?(5) Did the Kunlun Mountains experience continuous subduction since Neoproterozoic?(6) When did the Paleo\|Tethys closed in the West Kunlun range?展开更多
To define a tectonic environment switching from rifting to subduction and their respective duration time are usually largely debated.Such case occurs for the Liaohe rift:whether it went through a long subduction from ...To define a tectonic environment switching from rifting to subduction and their respective duration time are usually largely debated.Such case occurs for the Liaohe rift:whether it went through a long subduction from 2100to 1850 Ma or there were two different events in different展开更多
The West Kunlun orogenic belt(WKOB) along the northern margin of the Tibetan Plateau is important for understanding the evolution of the Proto-and Paleo-Tethys oceans. Previous investigations have focused on the igneo...The West Kunlun orogenic belt(WKOB) along the northern margin of the Tibetan Plateau is important for understanding the evolution of the Proto-and Paleo-Tethys oceans. Previous investigations have focused on the igneous rocks and ophiolites distributed mostly along the Xinjiang-Tibet road and the China-Pakistan road, and have constructed a preliminary tectonic model for this orogenic belt. However, few studies have focused on the so-called Precambrian basement in this area. As a result, the tectonic affinity of the individual terranes of the WKOB and their detailed evolution process are uncertain. Here we report new field observations, zircon and monazite U-Pb ages of the "Precambrian basement" of the South Kunlun terrane(SKT) and the Tianshuihai terrane(TSHT), two major terranes in the WKOB. Based on new zircon U-Pb age data, the amphibolite-facies metamorphosed volcanosedimentary sequence within SKT was deposited during the late Neoproterozoic to Cambrian(600-500 Ma), and the flysch-affinity Tianshuihai Group, as the basement of the TSHT, was deposited during the late Neoproterozoic rather than Mesoproterozoic. The rock association of the volcano-sedimentary sequence within SKT suggests a large early Paleozoic accretionary wedge formed by the long-term lowangle southward subduction of the Proto-Tethys Ocean between Tarim and TSHT. The amphibolitefacies metamorphism in SKT occurred at ca. 440 Ma. This ca. 440 Ma metamorphism is genetically related to the closure of the Proto-Tethys Ocean between Tarim and the Tianshuihai terrane, which led to the assembly of Tarim to Eastern Gondwana and the final formation of the Gondwana. Since the late Paleozoic to early Mesozoic, the northward subduction of the Paleo-Tethys Ocean along the HongshihuQiaoertianshan belt produced the voluminous early Mesozoic arc-signature granites along the southern part of NKT-TSHT. The Paleo-Tethys ocean between TSHT and Karakorum closed at ca. 200 Ma, as demonstrated by the monazite age of the paragneiss in the Kangxiwa Group. Our study does not favor the existence of a Precambrian basement in SKT.展开更多
The Altun faulted Zone has been focused by lots of geologists for many years because it lies in a boundary area of several main tectonic units in the western China and is a geographically northern boundary line of Tib...The Altun faulted Zone has been focused by lots of geologists for many years because it lies in a boundary area of several main tectonic units in the western China and is a geographically northern boundary line of Tibet plateau.The latest achievements show that the Altun faulted zone is not only a Cenozoic strike\|slip faulted system but also an orogenic zone which underwent mutually subduction\|collision among paleo\|plates (or terrains) in its early stage and consists of geological bodies of different ages and tectonic environments. Based on the results of geological characteristics,petrology, geochemistry and isotopic dating, the Altun Orogenic Zone can be divided into four tectonic units and is considered to have undergone five stages during its tectonic evolution.The four tectonics units are :(1) Abei metamorphic block, which consists of Archean metamorphic complex of granulite facies;.(2) Hongliugou—Lapeiquan tectonic melange belt, which is composed of ophiolite blocks(belt), OIB blocks, pelagic silicalite, shallow\|bathyal sedimentary rock blocks and high\|pressure metamorphi c rock blocks. (3) Milanhe—Jinyanshan island\|arc block, which consists of mid\|uplifting belt and the south and north active margins. The uplifting belt is composed of metasandstone, marble, overlying thick stromatolite (Jinyanshan Group of Jixian System). Metamorphic rocks of 450Ma occur in both south and north hactive margin. Post\|collision bimodal volcanic rocks and A\|type granite occur in the middle and the north side.(4) Apa—Mangya tectonic melange belt, which consists of ophiolite(including ultramafic rocks, gabbro, plagiogranite and basalt) and flysch and eclogite of late Ordovician.展开更多
Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippin...Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Oki-nawa Trough lavas:sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and sub-continental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the"seafloor spreading"process in the southwest segment,"rift propagation"process in the middle seg-ment, and"crustal extension"process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.展开更多
This paper summarizes the new results on the petrogenesis of Mesozoic granitoids and volcanic rocks in South China. The authors propose that these rocks were formed in time and space as a response to regional tectonic...This paper summarizes the new results on the petrogenesis of Mesozoic granitoids and volcanic rocks in South China. The authors propose that these rocks were formed in time and space as a response to regional tectonic regime change from the continent-continent collision of the Indosinian orogeny within the broad Tethyan orogenic domain in the Early Mesozoic (T1-T3) (Period Ⅰ) to the largely extensional setting as a result of the Yanshanian orogeny genetically associated with the NW-WNW-ward subduction of the paleo-Pacific oceanic lithosphere in the Late Mesozoic (J2-K2) (Period Ⅱ). Of the Period I Indosinian granitoids, the early (T1-T2^1) ones are syn-collisional, and formed in a compressional setting; the late (T2^2-T3) ones are latecollisional, and formed in a locally extensional environment. During the Period Ⅱ Yanshanian magmatism, the Early Yanshanian (J2-J3) granitoid-volcanic rocks, which are distributed mainly in the Nanling Range and in the interior of the South China tectonic block (SCB), are characteristic of rift-type intraplate magmatism, whereas the Late Yanshanian K1 granitoidovolcanic rocks are interpreted as genetically representing active continental margin magmatism. The K2 tholeiitic basalts interlayered with red beds are interpreted as genetically associated with the development of back-arc extensional basins in the interior of the SCB. The Yanshanian granitoid-volcanic rocks are distributed widely in South China, reflecting extensional tectonics within much of the SCB. The extension-induced deep crustal melting and underplating of mantle-derived basaltic melts are suggested as the two principal driving mechanisms for the Yanshanian granitic magmatism in South China.展开更多
The Changning - Menglian belt , located between the Baoshan - Gengma massif and the Simao - Lincang massif in Western Yunnan , preserves the complete record of a suture zone and the most continuous record of deep wate...The Changning - Menglian belt , located between the Baoshan - Gengma massif and the Simao - Lincang massif in Western Yunnan , preserves the complete record of a suture zone and the most continuous record of deep water sedimentation , representing the main branch of the Palaeo - Tethys polyisland ocean in the Hercynian - Indo-sinian stage .This belt could be further subdivided into three tectono - lithofacies zones . In the east zone , terrigenous elastics , argillaceous ,marl-argillaceous and silicate sedi-ments lie on the metamorphosed Early Palaeozoic base ment in concealed unconformity , representing deep water sediments on a passive continental margin . The central zone , although the basement rocks are absent from outcropping here , includes a contemporary complex of various sedimentary types , among them one type is of deep ocean sediments represented by radiolarian bedded chert , appearing from at least early Early Devonian to the Middle Triassic . Another type includes pure carbonates of the Early Carboniferous to the Late Permian , a type of shallow water carbonate platform on seamount or oceanic plateau within an ocean basin . In the west zone , the Permo - Carboniferous terrigenous elastics , argillaceous and silicate sediments appear again -representing the passive continental slope sedimentation in the east of the Baoshan - Gengma massif .As the Permo-Carboniferous rock types,sedimentary environments and palaeontological characters of the east and west zones are quite similar , we hold that these two zones were originally formed all on the eastern continental slope of the Baoshan - Gengma massif , and were separated due to eastward thrust later in the Indosinian orogeny . Intense thrust compacting also resulted in tectonic melange in the central zone , which is displayed by shallow water carbonates overlapping on or embedded in deep water volcanics . In the Lancangjiang belt , the Permo - Carboniferous are very complicated in sedimentary types which include island arc volcanics , deep water turbidites, silicolites and shallow water carbonates , representing the active continental margin in the west of the Simao massif. Whether there existed by Early Permi an, a Lincang magma tic arc still awaits further evidence . From the Late Permian,both the Changning-Meng-lian belt and the Lancangjiang belt experienced important sedimentary and volanic events which took place contemporaneously or penecontemporaneously but with different characters . Evidence for the Lincang magmatic arc began to be apparent , and the turbidite deep water basin in the Lancangjiang belt closed . Nevertheless , the Palaeo - Tethys oceanic basin , represented by the Changning - Menglian suture zone , existed until the Mid-dle Triassic . In the Late Triassic . massifs of Baoshan -Gengma ,Simao - Lincang ,collided and aggregated ,resulting in the disappearance of the Palaeo - Tethys ocean .展开更多
The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolu...The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle.展开更多
The Yangjiang-Yitongdong Fault (YJF) is an important NW-trending regional fault, which divides the Zhujiang (Pearl) River Mouth Basin (ZRMB) into western and eastern segments. In Cenozoic, the northern continental mar...The Yangjiang-Yitongdong Fault (YJF) is an important NW-trending regional fault, which divides the Zhujiang (Pearl) River Mouth Basin (ZRMB) into western and eastern segments. In Cenozoic, the northern continental margin of the South China Sea (SCS) underwent continental rifting, breakup, seafloor spreading and thermal subsidence processes, and the Cenozoic activities of YJF is one part of this series of complex processes. Two long NW-trending multichannel seismic profiles located on both sides of the YJF extending from the continental shelf to Continent-Ocean Boundary (COB) were used to study the tectonic and sedimentary characteristics of western ZRMB. Using the 2D-Move software and back-stripping method, we constructed the balance cross-section model and calculated the fault activity rate. Through the comprehensive consideration of tectonic position, tectonic evolution history, featured structure, and stress analysis, we deduced the activity history of the YJF in Cenozoic. The results showed that the YJF can be divided into two segments by the central uplift belt. From 65 Ma to 32 Ma, the YJF was in sinistral motion as a whole, inherited the preexisting sinistral motion of Mesozoic YJF, in which, the southern part of YJF was mainly in extension activity, controlling the formation and evolution of Yunkai Low Uplift, coupled with slight sinistral motion. From 32 Ma to 23.8 Ma, the sinistral motion in northern part of YJF continued, while the sinistral motion in southern part began to stop or shifted to a slightly dextral motion. After 23.8 Ma, the dextral motion in southern part of YJF continued, while the sinistral motion in northern part of YJF gradually stopped, or shifted to the slightly dextral motion. The shift of the YJF strike-slip direction may be related to the magmatic underplating in continent-ocean transition, southeastern ZRMB. According to the analysis of tectonic activity intensity and rift sedimentary structure, the activities of YJF in Cenozoic played a regulating role in the rift extension process of ZRMB.展开更多
The Ordos Basin is one of the most important oil and gas basins in China. Based on surface outcrop, key exploratory wells and seismic reflection data and by using the technology of "prototype basin recovery", seismi...The Ordos Basin is one of the most important oil and gas basins in China. Based on surface outcrop, key exploratory wells and seismic reflection data and by using the technology of "prototype basin recovery", seismic profile "layer flattening" and "restoration of balanced section", and other methods, the sedimentary boundary, structure and the evolution history of the Tianhuan depression on the western margin of the Ordos Basin are reestablished. The following results have been obtained. (1) The west boundary of the Late Triassic Ordos Basin was far beyond the scope of the current basin. The basin is connected with the Late Triassic Hexi Corridor Basin, and its western margin did not have tectonic characteristics of a foreland basin. (2) The Tianhuan depression was first formed in the Late Jurassic. At the late stage it was impacted by the late Yanshanian and Himalayan tectonic movement and the depression axis gradually moved eastwards to the present location with a cumulative migration distance of -30 km. (3) Eastward migration of the depression axis caused adjustment and even destruction of the originally formed oil and gas reservoirs, so that oil and gas remigrated and aggregated, resulting in secondary structural reservoirs formed at high positions on the western flank of the depression.展开更多
The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in ...The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in this lake provide an ideal place for the study of biogas formation and preservation, salt lake evolution, and the uplift of the Tibetan Plateau. In this study, we attempt to construct a paleomagnetic and ^(230)Th age model and to obtain information on tectonic activity and salt lake evolution through detailed studies on a 1300-m-long drill core(15DZK01) from the northwestern margin of the Qarhan Salt Lake area(Dongling Lake). Based on gypsum ^(230)Th dating, the age of the uppermost clastic deposit was calculated to be around 0.052 Ma. The polarity sequence consist of 13 pairs of normal and reversed zones,which can be correlated with subchrons C2r.1r-C1n of the geomagnetic polarity timescale(GPTS 2012)(from ~2.070 Ma to ~0.052 Ma). Sedimentary characteristics indicate that Dongling Lake witnessed freshwater environment between ~ 2.070 Ma and 1.546 Ma. During this period, the sedimentary record reflects primarily lakeshore, shallow-water and swamp environments, representing favourable conditions for the formation of hydrocarbon source rocks. Between 1.546 Ma and ~ 0.052 Ma, the Dongling Lake was in sulphate deposition stage, which contrasts with the central Qarhan Salt Lake area, where this stage did not occur in the meantime. During this stage, Dongling Lake was in a shallow saltwater lake environment, but several periods of reduced salinity occurred during this stage. During the late Pleistocene at ~0.052 Ma, the Dongling Lake experienced uplift due to tectonic activity, and saltwater migrated through the Sanhu Fault to the central Qarhan Salt Lake area, resulting in the absence of halite deposition stage. The residual saline water was concentrated into magnesium-rich brine due to the lack of freshwater, and few potassium salt deposits occur in the Dongling Lake area.展开更多
Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significan...Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significant in revealing the sag's tectonic evolution, its control on hydrocarbon accumulation, and the activity history of the northern section of the Tanlu Fault in the Cenozoic. Through systematic structure analysis of 3D seismic data of the Liaohe Western Sag, combined with balanced section analysis, a variety of structural features in relation to right-lateral strike-slip faults, such as echelon normal faults, "comb" structure, "flower" structure,"interpretable" and "buried" strike-slip faults have been revealed exist in the Liaohe Western Sag. According to the research in this paper, the complex structural phenomena in the Liaohe Western Sag could be reasonably interpreted as right-lateral strike-slip activity and the strike-slip activities of the Liaohe Western Sag began in the early Oligocene. The activity was weak at the beginning (E3s1-2), then strengthened gradually and reached its strongest level in the late Oligocene (E3d1). In the Miocene, the strike-slip activity was low and then strengthened significantly once again from the Pliocene to the present. It is speculated that the entire northern section of the Tanlu Fault has had a similar evolution history since the Oligocene.展开更多
The sequence stratigraphy framework of Paleogene of Qikou Sag has been built in this paper. The evolution law of episodic subsidence in Qikou Sag has been expounded, with the analysis of the characteristic of sequence...The sequence stratigraphy framework of Paleogene of Qikou Sag has been built in this paper. The evolution law of episodic subsidence in Qikou Sag has been expounded, with the analysis of the characteristic of sequence thickness, as well as the study of consedimental tectonic activity, subsidence history, paleogeomorphology and the coupling relationship among them. The faults controlling action was the dominant mechanism during rifting stage I , as the depression was the dominant mechanism during rifting stage III, which embodies a process from intense disparity fault depression to integral subsidence. Meanwhile, under the control of regional faulting and later stage depression, subsidence rate centers and paleogeomorphic concave centers are always corresponding to the sequence thickness centers, and the changes of subsidence centers and paleogeomorphology concave centers are consistent with the migration of thickness centers, which presents the restriction, coupling and response among them and clarifies the law that tectonic activity controls the basin fill by means of controlling the subsidence rate and paleogeomorphology from contributing factor angle. On this basis, the dynamic evolution of the composite pattern of structure-subsidence-deposition in the fault controlling actic region during the three rifting stages and their petroleum geological significance has been discussed.展开更多
Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean contine...Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean continental collision. New 1 : 10 000 scale structural mapping, combined with detailed petrological analysis in this area, has enabled us to accurately distinguish structures related to the Triassic continental collision from those related to post-collisional deformation in the ultrahigh pressure (UHP) metamorphic unit. The collisional or compressional structures include the massive eclogite with a weak foliation, foliated eclogite or UHP ductile shear zones, as well as upper amphibolite facies shear zones, whereas the post-collisional deformation is characterized by a regionally, flat-lying foliation containing stretching lineations and common reclined folds. The former is present exclusively in the eclogite lenses and their margins, representing orogenic thickening or syn-collisional events, while the latter was best occurred on variable scales under amphibolite facies conditions, showing sub-vertical, extreme shortening and ductile thinning of the metamorphic rock stack. The eclogite facies tectonites that have a marked fabric discordance to the penetrative amphibolite facies extension flow fabric are common. It is emphasized that an extensional tectonic setting following the collision-orogenic thickening stage was, at least partly, responsible for exhumation of the UHP metamorphic rocks in the Dabie massif. A new tectonic evolution model is proposed for the UHP metamorphic belt on the scale of the Dabie massif. The Bixiling area thus provides a window, from which the dynamic processes concerning the formation and exhumation of the UHP rocks can be observed. Regional studies in the Dabie Mountains have confirmed this interpretation.展开更多
基金the National Natural Science Foundation of China(No.42206073)the National Key R&D Program of China(No.2021YFC3100600)+5 种基金the Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110782)the China Post-doctoral Science Foundation(No.2021M703296)the Open Fund of the Key Laboratory of Tectonic Controlled Mineralization and Oil Reservoir of the Ministry of Natural Resources(No.gzck202101)the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2019ZD0206)the K.C.Wong Education Foundation(No.GJTD-2018-13)。
文摘The Nansha Block(NB)is one of the blocks separated from the southern margin of the South China Craton(SCC)by the western Pacific subduction,which contains rich information of geodynamic and tectonic transformation.To reveal the essence of western Paleo-Pacific subduction during the Triassic period,Well NK-1 in this block was selected for petrographic study,and published research data from other cooperative teams were compared.A double-cycle pattern of basic to neutral magmatic volcanism was established,and 36 lithological rhythmic layers and representative cryptoexplosive breccia facies and welded tuff bands were identified.Combined with a reanalysis of published geochronological data,geochemical elements,and isotope geochemistry,we found that the rock assemblages could be divided into an intermediate-acid dacite(DA)series(SiO_(2)>65%)and basaltic(BA)series(Co<40μg/g),which was formed during the early Late Triassic((218.6±3.2)–(217.9±3.5)Ma).BA exhibits obvious calc-alkaline island-arc magmatic properties:(^(87)Sr/^(86)Sr)_i ratio ranging 0.70377–0.71118(average:0.70645),^(147)Sm/^(144)Nd ratio ranging 0.119–0.193(average:0.168),and chondrite-normalized rare earth element(REE)curves being flat,while DA exhibits remarkable characteristics of subducted island-arc andesitic magma:(^(87)Sr/^(86)Sr)_i ratio(0.70939–0.71129;average:0.71035),εNd(t)value(-6.2–-4.8;average:-5.6)andε_(Hf)(t)value(-2.9–-1.7,average:-2.2)show obvious crust-mantle mixing characteristics.BA and DA reveal typical characteristics of island-arc magma systems and typeⅡenriched mantle(EM-Ⅱ)magma.BA magma was likely resulted from the process whereby the continental crust frontal accretionary wedge was driven by the Paleo-Pacific slab subduction into the deep and began to melt,resulting in a large amount of melt(fluid)joined the asthenosphere on the side of the continental margin.In contrast,DA magma was likely resulted from the process whereby the plate front was forced to bend with increasing subduction distance,which triggered the upwelling of the asthenosphere near the continent and subsequently led to the partial melting of the lithospheric mantle and lower crust due to continuous underplating.The lithospheric thinning environment in the study area at the end of Triassic created suitable conditions for the separation between the NB and SCC,which provided an opportunity for the formation of the early intracontinental rift during the later expansion of the South China Sea(SCS).
基金funded by the Deep Geological Survey Project of the China Geological Survey(Grant Nos.DD20230229,DD20230008,DD20160083 and DD20190011)the DREAM―Deep Resource Exploration and Advanced Mining of the National Key Research and Development Program of China(Grant No.2018YFC0603701)。
文摘The continental Asia is mainly composed of three major tectonic regimes,the Tethys,Paleo Asian Ocean,and West Pacific.It underwent multi-stage plate convergences,ocean-continent transformations,and subductions,collisions and/or collages,and post collisional(orogenic)extensions in Phanerozoic.Tectonic evolution of the Asia brings up a unique fault system and tectonic geomorphological features in the China's Mainland.Also,it provides a geodynamic background for the formation and evolution of metallogeneses and mineral systems,resulting in nonuniform distribution of tectono-metallogenic systems and metallogenic belts.The spatiotemporal distribution of mineral deposits in China and adjacent areas exhibits periodic variation under controlling of the full life Wilson cycle and tectonic evolution,forming the plate convergence-related mineral system in East Asia.Porphyry Cu deposits are mainly related to compressional systems in Paleozoic and early Mesozoic,and more closely related to post-collision extensional settings in late Mesozoic and Cenozoic.Orogenic Au deposits mainly formed in post-orogeny extensional setting.Alkaline rock related rare earth element deposits formed mainly at margins of the North China and Yangtze cratons.Granite-pegmatite Li and other rare metal deposits formed mainly in early Mesozoic,related to Indosinian post-orogeny extension.Tectono-metallogenic systems provide important basis for the prospecting of mineral resources.
基金supported by the China Geological Survey(Grant No.DD20230254)。
文摘The Beishan orogen,located in the central segment of the Tianshan–Solonker suture within the southern Central Asian Orogenic Belt(CAOB),is crucial for understanding the accretionary processes and continental growth in Central Asia.This orogen developed through the episodic amalgamation and accretion of continental margin arcs,island arcs,ophiolites,and accretionary wedges,undergoing a complex process of accretion and evolution.Since the Phanerozoic,the Beishan orogen has experienced multiple phases of magmatic and collision events.The intricate distribution of magmatic arc rocks has obscured the complete basement traces,and the spatial superposition of multiple magmatic arc phases has complicated the study of its evolutionary history.
基金financially supported by the National Key Research and Development Program (Grant Nos. 2018YFC0603804)the China Geological Survey (Grants DD20190042, DD20190039 and DD20160048-05)
文摘The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250-248 Ma,(2) granodiorites during 244-243 Ma, and(3) monzogranites and granodiorites during 232-230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250-248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244-243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing’an-Songliao composite block and the NCC. The 232-230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO;and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing’an-Songliao composite block and the NCC.
基金supported by National Science Foundation of China (Grant No. 41425010 & 41503023)China Geological Survey (Grant No. 12120114022701 & 12120115027101)
文摘A number of E-W trending subparallel mafic dikes of diabase composition occurred in Gyangze-Kangma area,eastern Tethyan Himalaya,southern Tibet.They intruded into the Tethyan Himalaya sedimentary sequence.Whether they belong to the;32 Ma Comei LIP(Zhu et al.,2009)or
文摘The exposed area of igneous rocks in East Kunlun Mountains is very large and they made a magmatic arc belt broad in scale. The intrusive rocks are mainly of Hercynian—Indo\|Sinian cycle and less of Caledonian and Yanshanian cycle [1~2] . During the geological mapping of 1∶250000 of Donggeicuonahu area, we firstly found the evidence of intrusive rock of Jinning cycle. Intrusive rocks of Jinning cycle, whose exposed area is about 30km, are located in Waliaoga\|Shaxiong area among East Kunlun magmatic arc belt and are composed of two intrusive bodies. The rock types of Jinning cycle are mainly trondjemite and tonalite. Their wall rocks are Baishahe Group of Paleo\|Proterozoic and was intruded by Hercynian-Indo\|Sinian cycle granodiorite . The wall rock types are mainly banded amphibolite,biotite\|plagioclase schist,leptynite,leptite,banded marble and mica\|schist , their metamorphic condition is overall middle amphibole facies , partly granulite facies , tectonic deformation was mainly of flowage fold and flowage shear in middle and deep levers. Although intrusive rocks of Jinning cycle had undergone intensive metamorphism and deformation, they also preserve the intrusive appearance and are uniform in field. We can see intrusive contacted with wall rock or infolded the basic inclusions. Gneissosity is very common in intrusive rocks of Jinning cycle. Even though intensive metamorphism and deformation lead to interlude between intrusive body and wall rock, most wall rock exists in intrusive rocks as giant roof or inclusions in general, we can see intrusive contacted between intrusive body and wall rock locally. Intrusive rocks are hoar color, meso\|coarse grain lepido\|granoblastic texture , minerals are mainly plagioclase evidence to study the forming and evolution of orogeny of Jinning and Caledonian cycle.
文摘The Kunlun Mountains is situated in the north margin of the Tibetan plateau and is one of crucial areas for unraveling the tectonic evolutionary history of the plateau and Eurasia. However, there is no widely accepted model for this area. One of the reasons is that some basic issues for the tectonic reconstruction have not been well settled, they are: (1) Is the Kunlun Mountains an ancient accretion prism, or a mini continent with old basement?(2) What is the age of the Kudi ophiolite, early Paleozoic or late Paleozoic?(3) When did the South Kunlun Block accrete to the Tarim Block?(4) Do the fifth and the forth sutures represent different oceans, or they are just the chronologically different relics of the same ocean?(5) Did the Kunlun Mountains experience continuous subduction since Neoproterozoic?(6) When did the Paleo\|Tethys closed in the West Kunlun range?
基金supported by 973 (2012CB416601) and NFSC (41322018) projects
文摘To define a tectonic environment switching from rifting to subduction and their respective duration time are usually largely debated.Such case occurs for the Liaohe rift:whether it went through a long subduction from 2100to 1850 Ma or there were two different events in different
基金funded by the National 305 Project of China (2018A03004-1, 2015BAB05B01-02)the Fundamental Research Fund for Central Universities(B16020127)
文摘The West Kunlun orogenic belt(WKOB) along the northern margin of the Tibetan Plateau is important for understanding the evolution of the Proto-and Paleo-Tethys oceans. Previous investigations have focused on the igneous rocks and ophiolites distributed mostly along the Xinjiang-Tibet road and the China-Pakistan road, and have constructed a preliminary tectonic model for this orogenic belt. However, few studies have focused on the so-called Precambrian basement in this area. As a result, the tectonic affinity of the individual terranes of the WKOB and their detailed evolution process are uncertain. Here we report new field observations, zircon and monazite U-Pb ages of the "Precambrian basement" of the South Kunlun terrane(SKT) and the Tianshuihai terrane(TSHT), two major terranes in the WKOB. Based on new zircon U-Pb age data, the amphibolite-facies metamorphosed volcanosedimentary sequence within SKT was deposited during the late Neoproterozoic to Cambrian(600-500 Ma), and the flysch-affinity Tianshuihai Group, as the basement of the TSHT, was deposited during the late Neoproterozoic rather than Mesoproterozoic. The rock association of the volcano-sedimentary sequence within SKT suggests a large early Paleozoic accretionary wedge formed by the long-term lowangle southward subduction of the Proto-Tethys Ocean between Tarim and TSHT. The amphibolitefacies metamorphism in SKT occurred at ca. 440 Ma. This ca. 440 Ma metamorphism is genetically related to the closure of the Proto-Tethys Ocean between Tarim and the Tianshuihai terrane, which led to the assembly of Tarim to Eastern Gondwana and the final formation of the Gondwana. Since the late Paleozoic to early Mesozoic, the northward subduction of the Paleo-Tethys Ocean along the HongshihuQiaoertianshan belt produced the voluminous early Mesozoic arc-signature granites along the southern part of NKT-TSHT. The Paleo-Tethys ocean between TSHT and Karakorum closed at ca. 200 Ma, as demonstrated by the monazite age of the paragneiss in the Kangxiwa Group. Our study does not favor the existence of a Precambrian basement in SKT.
文摘The Altun faulted Zone has been focused by lots of geologists for many years because it lies in a boundary area of several main tectonic units in the western China and is a geographically northern boundary line of Tibet plateau.The latest achievements show that the Altun faulted zone is not only a Cenozoic strike\|slip faulted system but also an orogenic zone which underwent mutually subduction\|collision among paleo\|plates (or terrains) in its early stage and consists of geological bodies of different ages and tectonic environments. Based on the results of geological characteristics,petrology, geochemistry and isotopic dating, the Altun Orogenic Zone can be divided into four tectonic units and is considered to have undergone five stages during its tectonic evolution.The four tectonics units are :(1) Abei metamorphic block, which consists of Archean metamorphic complex of granulite facies;.(2) Hongliugou—Lapeiquan tectonic melange belt, which is composed of ophiolite blocks(belt), OIB blocks, pelagic silicalite, shallow\|bathyal sedimentary rock blocks and high\|pressure metamorphi c rock blocks. (3) Milanhe—Jinyanshan island\|arc block, which consists of mid\|uplifting belt and the south and north active margins. The uplifting belt is composed of metasandstone, marble, overlying thick stromatolite (Jinyanshan Group of Jixian System). Metamorphic rocks of 450Ma occur in both south and north hactive margin. Post\|collision bimodal volcanic rocks and A\|type granite occur in the middle and the north side.(4) Apa—Mangya tectonic melange belt, which consists of ophiolite(including ultramafic rocks, gabbro, plagiogranite and basalt) and flysch and eclogite of late Ordovician.
基金The National Natural Science Foundation of China under contract Nos 41322036,41230960,40906034,41276003 and 41176058China Ocean Mineral Resources R&D Association(COMRA)under contract No.DY125-12-R-05
文摘Okinawa Trough is a back-arc, initial marginal sea basin, located behind the Ryukyu Arc-Trench System. The formation and evolution of the Okinawa Trough is intimately related to the subduction process of the Philippine Sea Plate beneath the Eurasian Plate since the late Miocene. The tectonic evolution of the trough is similar to other active back-arcs, such as the Mariana Trough and southern Lau Basin, all of which are experiencing the initial rifting and subsequent spreading process. This study reviews all petrologic and geochemical data of mafic volcanic lavas from the Okinawa Trough, Ryukyu Arc, and Philippine Sea Plate, combined with geophysical data to indicate the relationship between the subduction sources (input) and arc or back-arc magmas (output) in the Philippine Sea Plate-Ryukyu Arc-Okinawa Trough system (PROS). The results obtained showed that several components were variably involved in the petrogenesis of the Oki-nawa Trough lavas:sub-continental lithospheric mantle underlying the Eurasian Plate, Indian mid-oceanic ridge basalt (MORB)-type mantle, and Pacific MORB-type mantle. The addition of shallow aqueous fluids and deep hydrous melts from subducted components with the characteristics of Indian MORB-type mantle into the mantle source of lavas variably modifies the primitive mantle wedge beneath the Ryukyu and sub-continental lithospheric mantle (SCLM) beneath the Okinawa Trough. In the northeastern end of the trough and arc, instead of Indian MORB-type mantle, Pacific MORB-type mantle dominates the magma source. Along the strike of the Ryukyu Arc and Okinawa Trough, the systematic variations in trace element ratios and isotopic compositions reflect the first-order effect of variable subduction input on the magma source. In general, petrologic data, combined with geophysical data, imply that the Okinawa Trough is experiencing the"seafloor spreading"process in the southwest segment,"rift propagation"process in the middle seg-ment, and"crustal extension"process in the northeast segment, and a nascent ocean basin occurs in the southwest segment.
文摘This paper summarizes the new results on the petrogenesis of Mesozoic granitoids and volcanic rocks in South China. The authors propose that these rocks were formed in time and space as a response to regional tectonic regime change from the continent-continent collision of the Indosinian orogeny within the broad Tethyan orogenic domain in the Early Mesozoic (T1-T3) (Period Ⅰ) to the largely extensional setting as a result of the Yanshanian orogeny genetically associated with the NW-WNW-ward subduction of the paleo-Pacific oceanic lithosphere in the Late Mesozoic (J2-K2) (Period Ⅱ). Of the Period I Indosinian granitoids, the early (T1-T2^1) ones are syn-collisional, and formed in a compressional setting; the late (T2^2-T3) ones are latecollisional, and formed in a locally extensional environment. During the Period Ⅱ Yanshanian magmatism, the Early Yanshanian (J2-J3) granitoid-volcanic rocks, which are distributed mainly in the Nanling Range and in the interior of the South China tectonic block (SCB), are characteristic of rift-type intraplate magmatism, whereas the Late Yanshanian K1 granitoidovolcanic rocks are interpreted as genetically representing active continental margin magmatism. The K2 tholeiitic basalts interlayered with red beds are interpreted as genetically associated with the development of back-arc extensional basins in the interior of the SCB. The Yanshanian granitoid-volcanic rocks are distributed widely in South China, reflecting extensional tectonics within much of the SCB. The extension-induced deep crustal melting and underplating of mantle-derived basaltic melts are suggested as the two principal driving mechanisms for the Yanshanian granitic magmatism in South China.
文摘The Changning - Menglian belt , located between the Baoshan - Gengma massif and the Simao - Lincang massif in Western Yunnan , preserves the complete record of a suture zone and the most continuous record of deep water sedimentation , representing the main branch of the Palaeo - Tethys polyisland ocean in the Hercynian - Indo-sinian stage .This belt could be further subdivided into three tectono - lithofacies zones . In the east zone , terrigenous elastics , argillaceous ,marl-argillaceous and silicate sedi-ments lie on the metamorphosed Early Palaeozoic base ment in concealed unconformity , representing deep water sediments on a passive continental margin . The central zone , although the basement rocks are absent from outcropping here , includes a contemporary complex of various sedimentary types , among them one type is of deep ocean sediments represented by radiolarian bedded chert , appearing from at least early Early Devonian to the Middle Triassic . Another type includes pure carbonates of the Early Carboniferous to the Late Permian , a type of shallow water carbonate platform on seamount or oceanic plateau within an ocean basin . In the west zone , the Permo - Carboniferous terrigenous elastics , argillaceous and silicate sediments appear again -representing the passive continental slope sedimentation in the east of the Baoshan - Gengma massif .As the Permo-Carboniferous rock types,sedimentary environments and palaeontological characters of the east and west zones are quite similar , we hold that these two zones were originally formed all on the eastern continental slope of the Baoshan - Gengma massif , and were separated due to eastward thrust later in the Indosinian orogeny . Intense thrust compacting also resulted in tectonic melange in the central zone , which is displayed by shallow water carbonates overlapping on or embedded in deep water volcanics . In the Lancangjiang belt , the Permo - Carboniferous are very complicated in sedimentary types which include island arc volcanics , deep water turbidites, silicolites and shallow water carbonates , representing the active continental margin in the west of the Simao massif. Whether there existed by Early Permi an, a Lincang magma tic arc still awaits further evidence . From the Late Permian,both the Changning-Meng-lian belt and the Lancangjiang belt experienced important sedimentary and volanic events which took place contemporaneously or penecontemporaneously but with different characters . Evidence for the Lincang magmatic arc began to be apparent , and the turbidite deep water basin in the Lancangjiang belt closed . Nevertheless , the Palaeo - Tethys oceanic basin , represented by the Changning - Menglian suture zone , existed until the Mid-dle Triassic . In the Late Triassic . massifs of Baoshan -Gengma ,Simao - Lincang ,collided and aggregated ,resulting in the disappearance of the Palaeo - Tethys ocean .
基金This paper was sponsored by the National Natural Science Foundation of China(grant No.40272049)Doctor Research Foundation of China University of Petroleum(Project No.Y020109).
文摘The authors introduced two kinds of newly found soft-sediment deformation-synsedimentary extension structure and syn-sedimentary compression structure, and discuss their origins and constraints on basin tectonic evolution. One representative of the syn-sedimentary extension structure is syn-sedimentary boudinage structure, while the typical example of the syn-sedimentary compression structure is compression sand pillows or compression wrinkles. The former shows NW-SE-trendlng contemporaneous extension events related to earthquakes in the rift basin near a famous Fe-Nb-REE deposit in northern China during the Early Paleozoic (or Mesoproterozoic as proposed by some researches), while the latter indicates NE-SW-trending contemporaneous compression activities related to earthquakes in the Middle Triassic in the Nanpanjiang remnant basin covering south Guizhou, northwestern Guangxi and eastern Yunnan in southwestern China. The syn-sedimentary boudinage structure was found in an earthquake slump block in the lower part of the Early Paleozoic Sailinhudong Group, 20 km to the southeast of Bayan Obo, Inner Mongolia, north of China. The slump block is composed of two kinds of very thin layers-pale-gray micrite (microcrystalline limestone) of 1-2 cm thick interbedded with gray muddy micrite layers with the similar thickness. Almost every thin muddy micrite layer was cut into imbricate blocks or boudins by abundant tiny contemporaneous faults, while the interbedded micrite remain in continuity. Boudins form as a response to layer-parallel extension (and/or layer-perpendicular flattening) of stiff layers enveloped top and bottom by mechanically soft layers. In this case, the imbricate blocks cut by the tiny contemporaneous faults are the result of abrupt horizontal extension of the crust in the SE-NW direction accompanied with earthquakes. Thus, the rock block is, in fact, a kind of seismites. The syn-sedimentary boudins indicate that there was at least a strong earthquake belt on the southeast side of the basin during the early stage of the Sailinhudong Group. This may be a good constraint on the tectonic evolution of the Bayan Obo area during the Early Paleozoic time. The syn-sedimentary compression structure was found in the Middle Triassic flysch in the Nanpanjiang Basin. The typical structures are compression sand pillows and compression wrinkles. Both of them were found on the bottoms of sand units and the top surface of the underlying mud units. In other words, the structures were found only in the interfaces between the graded sand layer and the underlying mud layer of the flysch. A deformation experiment with dough was conducted, showing that the tectonic deformation must have been instantaneous one accompanied by earthquakes. The compression sand pillows or wrinkles showed uniform directions along the bottoms of the sand layer in the flysch, revealing contemporaneous horizontal compression during the time between deposition and diagenesis of the related beds. The Nanpanjiang Basin was affected, in general, with SSW-NNE compression during the Middle Triassic, according to the syn-sedimentary compression structure. The two kinds of syn-sedimentary tectonic deformation also indicate that the related basins belong to a rift basin and a remnant basin, respectively, in the model of Wilson Cycle.
基金The National Natural Science Foundation of China under contract Nos 41776072,41476039,41674092 and 41676045the Geotectonic Evolution of China and Compilation of International Asian Geotectonic Map under contract No.DD20190364the Marine Basic Geological Survey Project under contract No.DD20190627
文摘The Yangjiang-Yitongdong Fault (YJF) is an important NW-trending regional fault, which divides the Zhujiang (Pearl) River Mouth Basin (ZRMB) into western and eastern segments. In Cenozoic, the northern continental margin of the South China Sea (SCS) underwent continental rifting, breakup, seafloor spreading and thermal subsidence processes, and the Cenozoic activities of YJF is one part of this series of complex processes. Two long NW-trending multichannel seismic profiles located on both sides of the YJF extending from the continental shelf to Continent-Ocean Boundary (COB) were used to study the tectonic and sedimentary characteristics of western ZRMB. Using the 2D-Move software and back-stripping method, we constructed the balance cross-section model and calculated the fault activity rate. Through the comprehensive consideration of tectonic position, tectonic evolution history, featured structure, and stress analysis, we deduced the activity history of the YJF in Cenozoic. The results showed that the YJF can be divided into two segments by the central uplift belt. From 65 Ma to 32 Ma, the YJF was in sinistral motion as a whole, inherited the preexisting sinistral motion of Mesozoic YJF, in which, the southern part of YJF was mainly in extension activity, controlling the formation and evolution of Yunkai Low Uplift, coupled with slight sinistral motion. From 32 Ma to 23.8 Ma, the sinistral motion in northern part of YJF continued, while the sinistral motion in southern part began to stop or shifted to a slightly dextral motion. After 23.8 Ma, the dextral motion in southern part of YJF continued, while the sinistral motion in northern part of YJF gradually stopped, or shifted to the slightly dextral motion. The shift of the YJF strike-slip direction may be related to the magmatic underplating in continent-ocean transition, southeastern ZRMB. According to the analysis of tectonic activity intensity and rift sedimentary structure, the activities of YJF in Cenozoic played a regulating role in the rift extension process of ZRMB.
文摘The Ordos Basin is one of the most important oil and gas basins in China. Based on surface outcrop, key exploratory wells and seismic reflection data and by using the technology of "prototype basin recovery", seismic profile "layer flattening" and "restoration of balanced section", and other methods, the sedimentary boundary, structure and the evolution history of the Tianhuan depression on the western margin of the Ordos Basin are reestablished. The following results have been obtained. (1) The west boundary of the Late Triassic Ordos Basin was far beyond the scope of the current basin. The basin is connected with the Late Triassic Hexi Corridor Basin, and its western margin did not have tectonic characteristics of a foreland basin. (2) The Tianhuan depression was first formed in the Late Jurassic. At the late stage it was impacted by the late Yanshanian and Himalayan tectonic movement and the depression axis gradually moved eastwards to the present location with a cumulative migration distance of -30 km. (3) Eastward migration of the depression axis caused adjustment and even destruction of the originally formed oil and gas reservoirs, so that oil and gas remigrated and aggregated, resulting in secondary structural reservoirs formed at high positions on the western flank of the depression.
基金co-supported by the Geological Survey Project of China(Grant No. 1212331413023)the National Natural Science Foundation of China(Grant No. U1407207)
文摘The Qarhan Salt Lake area is the Quaternary depocenter of the Qaidam Basin, and carries thick lacustrine sediments, as well as rich potassium and magnesium salt deposits. The abundant resources and thick sediments in this lake provide an ideal place for the study of biogas formation and preservation, salt lake evolution, and the uplift of the Tibetan Plateau. In this study, we attempt to construct a paleomagnetic and ^(230)Th age model and to obtain information on tectonic activity and salt lake evolution through detailed studies on a 1300-m-long drill core(15DZK01) from the northwestern margin of the Qarhan Salt Lake area(Dongling Lake). Based on gypsum ^(230)Th dating, the age of the uppermost clastic deposit was calculated to be around 0.052 Ma. The polarity sequence consist of 13 pairs of normal and reversed zones,which can be correlated with subchrons C2r.1r-C1n of the geomagnetic polarity timescale(GPTS 2012)(from ~2.070 Ma to ~0.052 Ma). Sedimentary characteristics indicate that Dongling Lake witnessed freshwater environment between ~ 2.070 Ma and 1.546 Ma. During this period, the sedimentary record reflects primarily lakeshore, shallow-water and swamp environments, representing favourable conditions for the formation of hydrocarbon source rocks. Between 1.546 Ma and ~ 0.052 Ma, the Dongling Lake was in sulphate deposition stage, which contrasts with the central Qarhan Salt Lake area, where this stage did not occur in the meantime. During this stage, Dongling Lake was in a shallow saltwater lake environment, but several periods of reduced salinity occurred during this stage. During the late Pleistocene at ~0.052 Ma, the Dongling Lake experienced uplift due to tectonic activity, and saltwater migrated through the Sanhu Fault to the central Qarhan Salt Lake area, resulting in the absence of halite deposition stage. The residual saline water was concentrated into magnesium-rich brine due to the lack of freshwater, and few potassium salt deposits occur in the Dongling Lake area.
基金National Natural Science Foundation (40772086)Common advanced projects of CNPC oil and gas exploration (07-01C-01-04)
文摘Because of its rich oil and gas resources and the special tectonic location of the Liaohe Western Sag (the Tanlu Fault traverses the sag), Bohai Bay Basin, a detailed study of its strike-slip tectonics is significant in revealing the sag's tectonic evolution, its control on hydrocarbon accumulation, and the activity history of the northern section of the Tanlu Fault in the Cenozoic. Through systematic structure analysis of 3D seismic data of the Liaohe Western Sag, combined with balanced section analysis, a variety of structural features in relation to right-lateral strike-slip faults, such as echelon normal faults, "comb" structure, "flower" structure,"interpretable" and "buried" strike-slip faults have been revealed exist in the Liaohe Western Sag. According to the research in this paper, the complex structural phenomena in the Liaohe Western Sag could be reasonably interpreted as right-lateral strike-slip activity and the strike-slip activities of the Liaohe Western Sag began in the early Oligocene. The activity was weak at the beginning (E3s1-2), then strengthened gradually and reached its strongest level in the late Oligocene (E3d1). In the Miocene, the strike-slip activity was low and then strengthened significantly once again from the Pliocene to the present. It is speculated that the entire northern section of the Tanlu Fault has had a similar evolution history since the Oligocene.
基金support from the National Natural Science Foundation of China (Grant No.40872077)National Major Science and Technology Project of China (Grant No. 2011ZX05009-002)Open Project Foundation of Ministry of Education Key Laboratory of Tectonics and Petroleum Resources (Grant No. TPR-2011-09)
文摘The sequence stratigraphy framework of Paleogene of Qikou Sag has been built in this paper. The evolution law of episodic subsidence in Qikou Sag has been expounded, with the analysis of the characteristic of sequence thickness, as well as the study of consedimental tectonic activity, subsidence history, paleogeomorphology and the coupling relationship among them. The faults controlling action was the dominant mechanism during rifting stage I , as the depression was the dominant mechanism during rifting stage III, which embodies a process from intense disparity fault depression to integral subsidence. Meanwhile, under the control of regional faulting and later stage depression, subsidence rate centers and paleogeomorphic concave centers are always corresponding to the sequence thickness centers, and the changes of subsidence centers and paleogeomorphology concave centers are consistent with the migration of thickness centers, which presents the restriction, coupling and response among them and clarifies the law that tectonic activity controls the basin fill by means of controlling the subsidence rate and paleogeomorphology from contributing factor angle. On this basis, the dynamic evolution of the composite pattern of structure-subsidence-deposition in the fault controlling actic region during the three rifting stages and their petroleum geological significance has been discussed.
基金This study is supported by the National Natural Science Foundation of China (No. 49972067) the Major State Basic Research Development Program (No. G1999075506).
文摘Detailed three-dimensional structural studies indicate that the Bixiling area, Dabie massif, central China shows the deepest exposed levels of the orogenic wedge formed during the Triassic Yangtze -Sino-Korean continental collision. New 1 : 10 000 scale structural mapping, combined with detailed petrological analysis in this area, has enabled us to accurately distinguish structures related to the Triassic continental collision from those related to post-collisional deformation in the ultrahigh pressure (UHP) metamorphic unit. The collisional or compressional structures include the massive eclogite with a weak foliation, foliated eclogite or UHP ductile shear zones, as well as upper amphibolite facies shear zones, whereas the post-collisional deformation is characterized by a regionally, flat-lying foliation containing stretching lineations and common reclined folds. The former is present exclusively in the eclogite lenses and their margins, representing orogenic thickening or syn-collisional events, while the latter was best occurred on variable scales under amphibolite facies conditions, showing sub-vertical, extreme shortening and ductile thinning of the metamorphic rock stack. The eclogite facies tectonites that have a marked fabric discordance to the penetrative amphibolite facies extension flow fabric are common. It is emphasized that an extensional tectonic setting following the collision-orogenic thickening stage was, at least partly, responsible for exhumation of the UHP metamorphic rocks in the Dabie massif. A new tectonic evolution model is proposed for the UHP metamorphic belt on the scale of the Dabie massif. The Bixiling area thus provides a window, from which the dynamic processes concerning the formation and exhumation of the UHP rocks can be observed. Regional studies in the Dabie Mountains have confirmed this interpretation.