期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Image Recognition Model of Fraudulent Websites Based on Image Leader Decision and Inception-V3 Transfer Learning
1
作者 Shengli Zhou Cheng Xu +3 位作者 Rui Xu Weijie Ding Chao Chen Xiaoyang Xu 《China Communications》 SCIE CSCD 2024年第1期215-227,共13页
The fraudulent website image is a vital information carrier for telecom fraud.The efficient and precise recognition of fraudulent website images is critical to combating and dealing with fraudulent websites.Current re... The fraudulent website image is a vital information carrier for telecom fraud.The efficient and precise recognition of fraudulent website images is critical to combating and dealing with fraudulent websites.Current research on image recognition of fraudulent websites is mainly carried out at the level of image feature extraction and similarity study,which have such disadvantages as difficulty in obtaining image data,insufficient image analysis,and single identification types.This study develops a model based on the entropy method for image leader decision and Inception-v3 transfer learning to address these disadvantages.The data processing part of the model uses a breadth search crawler to capture the image data.Then,the information in the images is evaluated with the entropy method,image weights are assigned,and the image leader is selected.In model training and prediction,the transfer learning of the Inception-v3 model is introduced into image recognition of fraudulent websites.Using selected image leaders to train the model,multiple types of fraudulent websites are identified with high accuracy.The experiment proves that this model has a superior accuracy in recognizing images on fraudulent websites compared to other current models. 展开更多
关键词 fraudulent website image leaders telecom fraud transfer learning
下载PDF
Multimodal Fraudulent Website Identification Method Based on Heterogeneous Model Ensemble
2
作者 Shengli Zhou Linqi Ruan +1 位作者 Qingyang Xu Mincheng Chen 《China Communications》 SCIE CSCD 2023年第5期263-274,共12页
The feature analysis of fraudulent websites is of great significance to the combat,prevention and control of telecom fraud crimes.Aiming to address the shortcomings of existing analytical approaches,i.e.single dimensi... The feature analysis of fraudulent websites is of great significance to the combat,prevention and control of telecom fraud crimes.Aiming to address the shortcomings of existing analytical approaches,i.e.single dimension and venerability to anti-reconnaissance,this paper adopts the Stacking,the ensemble learning algorithm,combines multiple modalities such as text,image and URL,and proposes a multimodal fraudulent website identification method by ensembling heterogeneous models.Crossvalidation is first used in the training of multiple largely different base classifiers that are strong in learning,such as BERT model,residual neural network(ResNet)and logistic regression model.Classification of the text,image and URL features are then performed respectively.The results of the base classifiers are taken as the input of the meta-classifier,and the output of which is eventually used as the final identification.The study indicates that the fusion method is more effective in identifying fraudulent websites than the single-modal method,and the recall is increased by at least 1%.In addition,the deployment of the algorithm to the real Internet environment shows the improvement of the identification accuracy by at least 1.9%compared with other fusion methods. 展开更多
关键词 telecom fraud crime fraudulent website data fusion deep learning
下载PDF
DC-FIPD: Fraudulent IP Identification Method Based on Homology Detection
3
作者 Yuanyuan Ma Ang Chen +3 位作者 Cunzhi Hou Ruixia Jin Jinghui Zhang Ruixiang Li 《Computers, Materials & Continua》 SCIE EI 2024年第11期3301-3323,共23页
Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.Ho... Currently,telecom fraud is expanding from the traditional telephone network to the Internet,and identifying fraudulent IPs is of great significance for reducing Internet telecom fraud and protecting consumer rights.However,existing telecom fraud identification methods based on blacklists,reputation,content and behavioral characteristics have good identification performance in the telephone network,but it is difficult to apply to the Internet where IP(Internet Protocol)addresses change dynamically.To address this issue,we propose a fraudulent IP identification method based on homology detection and DBSCAN(Density-Based Spatial Clustering of Applications with Noise)clustering(DC-FIPD).First,we analyze the aggregation of fraudulent IP geographies and the homology of IP addresses.Next,the collected fraudulent IPs are clustered geographically to obtain the regional distribution of fraudulent IPs.Then,we constructed the fraudulent IP feature set,used the genetic optimization algorithm to determine the weights of the fraudulent IP features,and designed the calculation method of the IP risk value to give the risk value threshold of the fraudulent IP.Finally,the risk value of the target IP is calculated and the IP is identified based on the risk value threshold.Experimental results on a real-world telecom fraud detection dataset show that the DC-FIPD method achieves an average identification accuracy of 86.64%for fraudulent IPs.Additionally,the method records a precision of 86.08%,a recall of 45.24%,and an F1-score of 59.31%,offering a comprehensive evaluation of its performance in fraud detection.These results highlight the DC-FIPD method’s effectiveness in addressing the challenges of fraudulent IP identification. 展开更多
关键词 fraudulent IP identification homology detection clustering genetic optimization algorithm telecom fraud identification
下载PDF
Detecting telecommunication fraud by understanding the contents of a call 被引量:2
4
作者 Qianqian Zhao Kai Chen +2 位作者 Tongxin Li Yi Yang XiaoFeng Wang 《Cybersecurity》 2018年第1期160-171,共12页
Telecommunication fraud has continuously been causing severe financial loss to telecommunication customers in China for several years.Traditional approaches to detect telecommunication frauds usually rely on construct... Telecommunication fraud has continuously been causing severe financial loss to telecommunication customers in China for several years.Traditional approaches to detect telecommunication frauds usually rely on constructing a blacklist of fraud telephone numbers.However,attackers can simply evade such detection by changing their numbers,which is very easy to achieve through VoIP(Voice over IP).To solve this problem,we detect telecommunication frauds from the contents of a call instead of simply through the caller’s telephone number.Particularly,we collect descriptions of telecommunication fraud from news reports and social media.We use machine learning algorithms to analyze data and to select the high-quality descriptions from the data collected previously to construct datasets.Then we leverage natural language processing to extract features from the textual data.After that,we build rules to identify similar contents within the same call for further telecommunication fraud detection.To achieve online detection of telecommunication frauds,we develop an Android application which can be installed on a customer’s smartphone.When an incoming fraud call is answered,the application can dynamically analyze the contents of the call in order to identify frauds.Our results show that we can protect customers effectively. 展开更多
关键词 Telecom fraud fraud detection Natural language processing Machine learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部