Er3+-doped TeO2-ZnO-Na2O-B2O3-GeO2 (TZNBG) glasses were prepared by melt-quenching method. Differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA) were used to calculate thermal parameters...Er3+-doped TeO2-ZnO-Na2O-B2O3-GeO2 (TZNBG) glasses were prepared by melt-quenching method. Differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA) were used to calculate thermal parameters: crystallization temperature (Tx), glass transition temperature (Tg) and thermal expansion (α). Besides, Judd-Ofelt theory is applied to analyzing absorption spectra. Intensity parameters -λ (λ=2, 4, 6), transition probabilities Aed, radiative lifetime τi, and branching ratios β of Er3+ transitions were obtained. Emission cross-section σemis of 4I13/2→4I15/2 transition of Er3+ was calculated according to the theory of McCumber. All of the parameters indicate that the thermal stability and optical properties of Er3+-doped TZNBG glasses are improved effectively.展开更多
The red, green, and blue upconversion properties of Er^3+/Tm^3+/Yb^3+-codoped oxyhalide tellurite glasses were studied under 980 nm LD excitation. The intense red (657 nm), green (530 and 545 nm), and blue (47...The red, green, and blue upconversion properties of Er^3+/Tm^3+/Yb^3+-codoped oxyhalide tellurite glasses were studied under 980 nm LD excitation. The intense red (657 nm), green (530 and 545 nm), and blue (476 nm) emissions were simultaneously observed at room temperature. The results showed that the mixed halide modified tellurite glass (TZFCB) had strong upconversion emissions. The effect of halide on upconversion intensity was observed and discussed, and possible upconversion mechanisms were evaluated. The intense red, green, and blue upconversion luminescence of Er^3+/Tm^3+/Yb^3+-codoped oxyhalide tellurite glasses might be a potentially useful material for developing three-dimensional displays applications.展开更多
A study of energy transfer of Er^3+/Nd^3+ codoped tellurite glasses was presented. By Nd^3+ co-doping, both the Er^3+ green emission corresponding to the Er^3+: (^4S3/2, ^2H11/2)→^4I15/2 transitions and the r...A study of energy transfer of Er^3+/Nd^3+ codoped tellurite glasses was presented. By Nd^3+ co-doping, both the Er^3+ green emission corresponding to the Er^3+: (^4S3/2, ^2H11/2)→^4I15/2 transitions and the red emission corresponding to the Er^3+: ^4F9/2→^4I15/2 transitions were quenched. The energy transfer mechanism between Er^3+ and Nd^3+ was discussed based on their energy level characteristics. The interaction parameters, CO-A, for the energy transfer processes from Er^3+ to Nd^3+ in tellurites glass were calculated. Finally, the resonant transfer Er^3+: ^4I9/2→Nd^3+: (^4F5/2, ^2H9/2) was proposed to be the most probable microscopic process to occur in contrast with the other processes.展开更多
A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was bas...A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion processes between Tm^3+ and Yb^3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm^3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and intensity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping process. The potential advantages of Tm^3+/Yb^3+ co-doped tellurite glass as amplifier material were concluded.展开更多
1 wt pct Nd2O3-doped tellurite bulk glass and fiber with the same composition of 75TeO2-15ZnO-5Na2O-5Li2O4(mol fraction, %) were fabricated. Judd-Ofelt analysis was carried out for the bulk. The emission from the 4F3/...1 wt pct Nd2O3-doped tellurite bulk glass and fiber with the same composition of 75TeO2-15ZnO-5Na2O-5Li2O4(mol fraction, %) were fabricated. Judd-Ofelt analysis was carried out for the bulk. The emission from the 4F3/2→4I13/2 transition in fiber is at 1.33 μm wavelength with a spectral bandwidth of 55 nm, which is similar to that in bulk. In the case of the fiber, the lifetime of 4F3/2 Ievel is 164 μs, and the quantum efficiency is -100%. The figure-of-merit for gain (<δpTo) for Nd3+-doped tellurite glass is about 2.8×10-24 cm2·S, which is quite comparable vvith that in Nd3+-doped fluoroaluminate glasses, and is an order of magnitude larger than Pr3+-doped fluoride glasses.展开更多
Based on the host of tellurite glasses, the glass formation, preform manufacture, and fiber fabrication are described. The characterization of amplified spontaneous emission (ASE) from this newly fabricated single-mod...Based on the host of tellurite glasses, the glass formation, preform manufacture, and fiber fabrication are described. The characterization of amplified spontaneous emission (ASE) from this newly fabricated single-mode Er3+-doped tellurite fibers is also presented. When pumped at 980 nm, a very broad erbium ASE around 1.53 μm was observed. The variations of ASE with fiber length and pumping power are measured and discussed. The output of 2 mW from Er3+-doped tellurite fiber ASE source was obtained under the pump power of 660 mW.展开更多
Tm^3 +/Yb^3 +-codoped oxychloride tellurite glasses were prepared. Thermal stability, Raman spectra and upconversion luminescence spectra were studied, and upconversion luminescence mechanisms were analyzed. The res...Tm^3 +/Yb^3 +-codoped oxychloride tellurite glasses were prepared. Thermal stability, Raman spectra and upconversion luminescence spectra were studied, and upconversion luminescence mechanisms were analyzed. The results show that the intense blue and relatively weak red emissions centered at 476 and 649 nm corresponding to the transitions ^1G4→^3H6 and ^1G4→^3H4 of Tm^3+ , respectively, were simultaneously observed at room temperature under 980 nm LD excitation. With increasing while PbCl2 content, thermal stability of host glasses increases, phonon energy of host glasses decreases, and upconversion luminescence intensities increase, which indicate that Tm^3+/ Yb^3+-codoped oxychloride tellurite glasses can be used as potential host materials for upconversion blue lasers.展开更多
A transparent tellufite glass-ceramic containing nanocrystals based on the composition of 15Li2O-15Nb2O5-7OTeO2-0. 1ErEr2O3-0. 4Yb2O3 (mol%)was prepared by using a two-step heat-treatment. The XRD patterns show that...A transparent tellufite glass-ceramic containing nanocrystals based on the composition of 15Li2O-15Nb2O5-7OTeO2-0. 1ErEr2O3-0. 4Yb2O3 (mol%)was prepared by using a two-step heat-treatment. The XRD patterns show that the composition of crystals in glass-ceramics is possibly Yb6Te5O19.2 or Er6Te5O19.2, and the dimension of crystals is about 55 nm. The Judd-Ofeh parameters, Ωt, (t = 2, 4, 6), and the spontaneous emission probability of Er^3+ in glass and glass-ceramics were calculated from optical absorption spectra. The absorption cross section of Er^3 :^4I15/2→I13/2 and the emission cross section of Er^3 + :^4I15/2→I13/2 in two samples were also calculated. Raman scattering spectra of glass and glass-ceramic were measured, the fluorescence spectra and the upconversion spectra of Er^3 + ion in glass and glass-ceramic were compared.展开更多
Er^3+/Yb^3+-codoped TeO2-ZnO-BaO-La2O3 tellurite glass fiber was fabricated by rotation and rod-in-tube technologies. The thermal stability and optical refractive index of the core and cladding glasses were determin...Er^3+/Yb^3+-codoped TeO2-ZnO-BaO-La2O3 tellurite glass fiber was fabricated by rotation and rod-in-tube technologies. The thermal stability and optical refractive index of the core and cladding glasses were determined by DTA and optical coupler, respectively. The average background loss of tellurite glass fiber was 1.8 dB/m at 1310 nm. Optical microscopy and field emission scanning electron microscope (FESEM) were used to study structural characteristics of preforms and optical fibers. The main loss of tellurite glass fiber could be attributed to scatter centre due to core-cladding interface defects. The amplifier performance of tellurite glass fiber was investigated by pumping with 980 nm laser diode (LD). The gain coefficient and maximum signal gain were 0.21 dB/mW and 10 dB, respectively, for a pumping power of 120 mW. Gains exceeding 5 dB were obtained over 30 nm bandwidth from 1535 to 1565 nm. The minimum noise figure was 4.8 dB at 1557 nm.展开更多
A series of oxyfluoride glasses with the compositions of 75 mol% TeO2, 10 mol% Nb2O5, (15 mol%-x) BaO, x BaF2 (x =0 mol%, 5 mol%, 10 mol%, 15 mol%) doped with Yb2O3 were prepared by the melt-quenching method. Thei...A series of oxyfluoride glasses with the compositions of 75 mol% TeO2, 10 mol% Nb2O5, (15 mol%-x) BaO, x BaF2 (x =0 mol%, 5 mol%, 10 mol%, 15 mol%) doped with Yb2O3 were prepared by the melt-quenching method. Their emission cross-sections, fluorescence lifetimes, and gain properties were investigated by using the absorption spectra and the fluorescence decay curves. The results show that by substituting BaF2 for BaO, the emission cross-section decreases from 1.37 pm^2 to 1.21 pm^2, and the fluorescence lifetime increases from 0.71 ms to 0.96 ms. These properties indicate that this oxyfluoride tellurite glass may have potential uses as the Yb2O3-doped gain medium in a solid laser.展开更多
The upconversion luminescence in Er 3+ doped tellurite glasses (MKT: TeO_2-MgO-K_2O) were performed. Two green emission bands at 521 and 550 nm, corresponding to the 2H_ 11/2→4I_ 15/2 and 4S_ 3/2→4I_ 15/2 transition...The upconversion luminescence in Er 3+ doped tellurite glasses (MKT: TeO_2-MgO-K_2O) were performed. Two green emission bands at 521 and 550 nm, corresponding to the 2H_ 11/2→4I_ 15/2 and 4S_ 3/2→4I_ 15/2 transitions, respectively, were observed. Coordinate field index, which was proposed by deducing from Pauling′s rules on the basis of Zachariasen′s random network theory, can be used to rationalize the remarkable variation in the intensity of upconversion luminescence.展开更多
The Nd^3+-doped pared. The absorption and tellurite glasses were preemission spectra of Nd^3 +- doped tellurite glasses at room temperature were measured. The Judd-Ofelt parameters (Ω2, Ω4, Ω6) of the glasses w...The Nd^3+-doped pared. The absorption and tellurite glasses were preemission spectra of Nd^3 +- doped tellurite glasses at room temperature were measured. The Judd-Ofelt parameters (Ω2, Ω4, Ω6) of the glasses were calculated from measured absorption spectra. The calculation results of luminescence properties (A, β, τrad, σ) of Nd^3+ ions in the tellurite were glasses were given. Spectroscopic properties, concentration quenching in these kinds of the glasses were investigated. The results indicate that the tellurite glasses with composition of 70% TeO2, 20% ZnO, ( 10 - x ) % La2O3, x % Nd2O3 ( mol% ) show high emission cross section and low phonon energy. The fluorescent intensity and the emission cross section have a maxi- mum value at x = 0.5, namely, the optimum Nd^3 + ion concentration in the tellurite glass is 0.5% (1.93 × 10^20 ions·cm^-3). The fluorescence properties of Nd^3+ measured are basically in accord with the calculated results.展开更多
Raman spectra of xLa203-(1-x)TeO2 (x=0, 0.05, 0.10, 0.15, 0.20, and 0.25) lanthanum tellurite glasses were measured and analyzed over the entire glass-forming region in an effort to quantitatively follow the struc...Raman spectra of xLa203-(1-x)TeO2 (x=0, 0.05, 0.10, 0.15, 0.20, and 0.25) lanthanum tellurite glasses were measured and analyzed over the entire glass-forming region in an effort to quantitatively follow the structural changes caused by lanthanum oxide variation. For the first time, systematic intensity measurements have been performed to elucidate the composition induced structural changes in tile high-frequency stretching vibration region and a possible mechanism was proposed. The network structure of the glasses is formed by mixing TeO4 trigonal bipyramid and Te03 trigonal pyramid units. The change of the lanthanum oxide content results in conversion of the TeO4 units to TeO3 units with a varying number of non-bridging oxygen atoms. Analysis of the Raman band contours in terms of vibrations due to different oxygen bridged trigonal bipyramid and trigonal pyramid tellurite structural units, allowed to calculate the relative amounts of the species involved in the structural changes with composition. The fraction of the terminal oxygen atoms has been estimated from the Raman intensities with the aid of a structural model concerning the structure of tellurite network systems. The simulation of the experimental density of lanthanum tellurite glasses with modifier content up to 25% revealed that the short range order building units assumed here are sufficient to account for the overall structure in these glasses.展开更多
The glass transition temperature (T), crystallization onset temperature (T) and Raman scattering spectra of new tellurite glasses were studied as the function of glass composition. With the introduction of other m...The glass transition temperature (T), crystallization onset temperature (T) and Raman scattering spectra of new tellurite glasses were studied as the function of glass composition. With the introduction of other metal oxides such as Nb2O5, BaO and WO3, T temperature increases, the intensity of exothermal peaks decreases, and thermal stability of tellurite glass improves. It was found that more TeO3 units transformed into TeO4 units and non-bridging oxygen atoms decreased with the incorporating other metal oxides in glassy network, when the content of TeO2 was fixed. Appearance of peak at 920 cm^-1 broadens the Raman bandwidth of tellurite glasses, which is very useful realize high efficient broadband fiber Raman amplifiers.展开更多
Nd^(3+)-doped tellurite glasses are promising materials for thermometers based on the fluorescence intensity ratio(FIR)technique.Nevertheless,at high Nd^(3+)concentrations,energy transfer(ET)processes such as optical ...Nd^(3+)-doped tellurite glasses are promising materials for thermometers based on the fluorescence intensity ratio(FIR)technique.Nevertheless,at high Nd^(3+)concentrations,energy transfer(ET)processes such as optical reabsorption and cross-relaxation can affect the Nd^(3+)emission,which has been little explored in the literature.Therefore,the present work investigated the use of Nd^(3+)-doped tellurite glass(samples doped with Nd^(3+)at 0.2 mol%,0.5 mol%,2.0 mol%,and 4.0 mol%)in fluorescence thermometers,in the temperature range from 299 to 371 K.The results indicate a strong dependence of the FIR parameters on the Nd^(3+)concentration,due to changes in the emission band profiles caused by optical reabsorption of the Nd^(3+)emissions and cross-relaxation processes.A decrease of the relative sensitivity of the ratio^(4)F_(5/2)→^(4)I_(9/2)/^(4)F_(3/2)→^(4)I_(9/2)is observed for samples doped with higher amounts of Nd^(3+).The maximum relative sensitivity at 299 K is 3.00%/K,which is the highest value among the reported Nd^(3+)ions.展开更多
yD3+/Tm3+ co-doped and yD3+/Ho3+/Tm3+ tri-doped tellurite glasses were synthesized by fusing the mixture of TeO2, PbF2, AIF3, BaF2, Yb2O3, Tm203 and H0203 in a cortmdum crucible at 850 ℃ for 20 min. The synthesi...yD3+/Tm3+ co-doped and yD3+/Ho3+/Tm3+ tri-doped tellurite glasses were synthesized by fusing the mixture of TeO2, PbF2, AIF3, BaF2, Yb2O3, Tm203 and H0203 in a cortmdum crucible at 850 ℃ for 20 min. The synthesized glasses were characterized by upconversion emission spectra under the excitation of 980 nm laser, and the emission colors were investigated according to the CIE-1931 standards. The results indicated that yD3+/Tm3+ co-doped tellurite glass exhibited blue upconversion emission with favor- able color coordinates of (0.20, 0.07). Yb3+, HO3+ and Tm3+ tri-doped tellurite glasses presented white upconversion luminescence under a single 980 nm laser excitation. Moreover, a very wide range of emission colors could be tuned by altering Ho3+ concentration. Combining the contribution of adjusting Ho3+ concentration and pump power, near equal energy white light was obtained.展开更多
The power scaling on mid-infrared Raman fibre lasers(RFLs) is in demand for applications in health, environment and security. In this paper, we present the simulated laser behaviours of the tellurite glass RFLs pumped...The power scaling on mid-infrared Raman fibre lasers(RFLs) is in demand for applications in health, environment and security. In this paper, we present the simulated laser behaviours of the tellurite glass RFLs pumped by 300-W Tm-doped fibre lasers(TDFLs) at 2 μm for the first time. By combining the advantages of the TDFLs and tellurite fibre, the output power at 2.35 μm has reached over hundreds of watts by first-order Raman shift. Moreover, the cascaded RFLs have been demonstrated with a wavelength extension greater than 3 μm and output power of tens of watts. To maximize the output power and the slope efficiency of the RFLs, we further analyse the interaction between the Raman gain and cavity loss, which are determined by fibre length and output reflectance of the laser cavity.展开更多
In this work we repo rt on structural and spect roscopic properties of Yb^3+doped and Pr^3+/Yb^3+co-doped TeO2-Bi2 O3-ZnO-Li2 O-Nb2 O5(TBZLN)tellurite glasses.Bending and stretching modes of TeO2 and Te-OH bond(strong...In this work we repo rt on structural and spect roscopic properties of Yb^3+doped and Pr^3+/Yb^3+co-doped TeO2-Bi2 O3-ZnO-Li2 O-Nb2 O5(TBZLN)tellurite glasses.Bending and stretching modes of TeO2 and Te-OH bond(strong and weak)were analysed from the deconvolution of observed Raman and FT-IR spectra.Based on the absorption measurements,the energy bands of Yb^3+and Pr^3+ions are assigned.The spectroscopic properties for the radiative transitions of Yb^3+and Pr^3+ions were reported using McCumber and Judd-Ofelt theories.Visible emission bands originating from 3 P1 and 3 P0 to lower lying levels of Pr^3+were registered under 447 nm excitation.The emission band around 1334 nm assigned to the Pr3:1 G4→3 H5 was observed when excited at 980 nm.The stimulated emission cross-section(σemi(λ))and effective linewidth(Δλeff)for the 3 P1→3 H6,3 P1→3 H5,3 P0→3 H6,3 P0→3 F2,3 P1→3 F3,3 P1→3 F4,3 P0→3 F4 and 1 G4→3 H5 transitions of Pr^3+are reported.Upconversion luminescence in Pr^3+/Yb^3+codoped glass upon 980 nm excitation was measured.Possible resonant transfer processes between Yb^3+and Pr^3+ions are presented and discussed.The chromaticity co-ordinates were also evaluated from the visible emission spectra showing that Pr^3+/Yb^3+co-doped glass may be suitable for the development of yellow-orange(λexc=447 nm)and near white light(λexc=980 nm)emitting devices in photonics.展开更多
Sm3+/yb3+ co-doped tellurite glasses are prepared by melt-quenching technique. The density of the glasses varies between 4.65 and 4.84 g/cm3. The optical absorption spectra consist of eight bands in the wavelength r...Sm3+/yb3+ co-doped tellurite glasses are prepared by melt-quenching technique. The density of the glasses varies between 4.65 and 4.84 g/cm3. The optical absorption spectra consist of eight bands in the wavelength range of 350-2 000 nm, which correspond to the transitions from ground level 6H5/2 to the various excited states of the Sm3+ ion. Energy band gaps vary in the range of 2.73 2.91 eV, and the Urbach energy ranges from 0.21 to 0.27. Emission spectra exhibit four peaks originating from the 4G5/2 energy level centered at 576, 613, 657, and 718 nm. Quenches in emission bands may be due to the energy transfer from the Sm3+ to Yb3+ ions.展开更多
Upconversion luminescence of Er3+/Yb3+-doped halide tellurite glass is investigated experimentally upon 976-nm excitation. Three intense emissions centered at 525, 545 and 655 nm owing to the transitions 2H11/2-4I15/2...Upconversion luminescence of Er3+/Yb3+-doped halide tellurite glass is investigated experimentally upon 976-nm excitation. Three intense emissions centered at 525, 545 and 655 nm owing to the transitions 2H11/2-4I15/2, 4S3/2 -4I15/2 and 4F9/2-4I15/2, respectively, are observed when pumping power is as low as 20 mW. The upconversion mechanisms and power dependent intensities are discussed. The high-populated 4I11/2 level is supposed to serve as the intermediate state responsible for the upconversion processes.展开更多
文摘Er3+-doped TeO2-ZnO-Na2O-B2O3-GeO2 (TZNBG) glasses were prepared by melt-quenching method. Differential scanning calorimetry (DSC) and thermal mechanical analysis (TMA) were used to calculate thermal parameters: crystallization temperature (Tx), glass transition temperature (Tg) and thermal expansion (α). Besides, Judd-Ofelt theory is applied to analyzing absorption spectra. Intensity parameters -λ (λ=2, 4, 6), transition probabilities Aed, radiative lifetime τi, and branching ratios β of Er3+ transitions were obtained. Emission cross-section σemis of 4I13/2→4I15/2 transition of Er3+ was calculated according to the theory of McCumber. All of the parameters indicate that the thermal stability and optical properties of Er3+-doped TZNBG glasses are improved effectively.
基金supported by the National Natural Science Foundation of China (60508014 and 50772102)Program for New Century Excellent Talents in University (NCET-07-0786)the Natural Science Foundation of Zhejiang Province (R406007)
文摘The red, green, and blue upconversion properties of Er^3+/Tm^3+/Yb^3+-codoped oxyhalide tellurite glasses were studied under 980 nm LD excitation. The intense red (657 nm), green (530 and 545 nm), and blue (476 nm) emissions were simultaneously observed at room temperature. The results showed that the mixed halide modified tellurite glass (TZFCB) had strong upconversion emissions. The effect of halide on upconversion intensity was observed and discussed, and possible upconversion mechanisms were evaluated. The intense red, green, and blue upconversion luminescence of Er^3+/Tm^3+/Yb^3+-codoped oxyhalide tellurite glasses might be a potentially useful material for developing three-dimensional displays applications.
基金supported by the Natural Science Foundation of Zhejiang Province (2006C21082)the Education Department Project of Zhejiang Province (20061664)
文摘A study of energy transfer of Er^3+/Nd^3+ codoped tellurite glasses was presented. By Nd^3+ co-doping, both the Er^3+ green emission corresponding to the Er^3+: (^4S3/2, ^2H11/2)→^4I15/2 transitions and the red emission corresponding to the Er^3+: ^4F9/2→^4I15/2 transitions were quenched. The energy transfer mechanism between Er^3+ and Nd^3+ was discussed based on their energy level characteristics. The interaction parameters, CO-A, for the energy transfer processes from Er^3+ to Nd^3+ in tellurites glass were calculated. Finally, the resonant transfer Er^3+: ^4I9/2→Nd^3+: (^4F5/2, ^2H9/2) was proposed to be the most probable microscopic process to occur in contrast with the other processes.
基金supported by the Natural Science Foundation of Zhejiang Provience, China (2006C21082)National Natural Science Foundation of China (60677015)+1 种基金Foundation of Ningbo University (XR0710018)sponsored by KC Wong Magna Fund in NingBo University
文摘A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion processes between Tm^3+ and Yb^3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm^3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and intensity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping process. The potential advantages of Tm^3+/Yb^3+ co-doped tellurite glass as amplifier material were concluded.
基金This work was supported by the N ational Natural Science Foundation of China(Contract No.60207006)Project of Optical Science and Technology of Shanghai(Contract No.022261046)Science and Technique Qimingxing Fund of Shanghai(No.04QMX1448).
文摘1 wt pct Nd2O3-doped tellurite bulk glass and fiber with the same composition of 75TeO2-15ZnO-5Na2O-5Li2O4(mol fraction, %) were fabricated. Judd-Ofelt analysis was carried out for the bulk. The emission from the 4F3/2→4I13/2 transition in fiber is at 1.33 μm wavelength with a spectral bandwidth of 55 nm, which is similar to that in bulk. In the case of the fiber, the lifetime of 4F3/2 Ievel is 164 μs, and the quantum efficiency is -100%. The figure-of-merit for gain (<δpTo) for Nd3+-doped tellurite glass is about 2.8×10-24 cm2·S, which is quite comparable vvith that in Nd3+-doped fluoroaluminate glasses, and is an order of magnitude larger than Pr3+-doped fluoride glasses.
基金The authors are grateful to the Rising-star Project of Shanghai Municipal Science and Technology Commission(No.04QMX1448)the Project of Optical Science and Technology of Shanghai(No.022261046)the National Natural Science Foundation of China(No.60207006)for the support of this project.
文摘Based on the host of tellurite glasses, the glass formation, preform manufacture, and fiber fabrication are described. The characterization of amplified spontaneous emission (ASE) from this newly fabricated single-mode Er3+-doped tellurite fibers is also presented. When pumped at 980 nm, a very broad erbium ASE around 1.53 μm was observed. The variations of ASE with fiber length and pumping power are measured and discussed. The output of 2 mW from Er3+-doped tellurite fiber ASE source was obtained under the pump power of 660 mW.
文摘Tm^3 +/Yb^3 +-codoped oxychloride tellurite glasses were prepared. Thermal stability, Raman spectra and upconversion luminescence spectra were studied, and upconversion luminescence mechanisms were analyzed. The results show that the intense blue and relatively weak red emissions centered at 476 and 649 nm corresponding to the transitions ^1G4→^3H6 and ^1G4→^3H4 of Tm^3+ , respectively, were simultaneously observed at room temperature under 980 nm LD excitation. With increasing while PbCl2 content, thermal stability of host glasses increases, phonon energy of host glasses decreases, and upconversion luminescence intensities increase, which indicate that Tm^3+/ Yb^3+-codoped oxychloride tellurite glasses can be used as potential host materials for upconversion blue lasers.
文摘A transparent tellufite glass-ceramic containing nanocrystals based on the composition of 15Li2O-15Nb2O5-7OTeO2-0. 1ErEr2O3-0. 4Yb2O3 (mol%)was prepared by using a two-step heat-treatment. The XRD patterns show that the composition of crystals in glass-ceramics is possibly Yb6Te5O19.2 or Er6Te5O19.2, and the dimension of crystals is about 55 nm. The Judd-Ofeh parameters, Ωt, (t = 2, 4, 6), and the spontaneous emission probability of Er^3+ in glass and glass-ceramics were calculated from optical absorption spectra. The absorption cross section of Er^3 :^4I15/2→I13/2 and the emission cross section of Er^3 + :^4I15/2→I13/2 in two samples were also calculated. Raman scattering spectra of glass and glass-ceramic were measured, the fluorescence spectra and the upconversion spectra of Er^3 + ion in glass and glass-ceramic were compared.
基金supported by the Science and Technology Department of Zhejiang Province (2006C21082)K.C.Wong Magna Fund in Ningbo University
文摘Er^3+/Yb^3+-codoped TeO2-ZnO-BaO-La2O3 tellurite glass fiber was fabricated by rotation and rod-in-tube technologies. The thermal stability and optical refractive index of the core and cladding glasses were determined by DTA and optical coupler, respectively. The average background loss of tellurite glass fiber was 1.8 dB/m at 1310 nm. Optical microscopy and field emission scanning electron microscope (FESEM) were used to study structural characteristics of preforms and optical fibers. The main loss of tellurite glass fiber could be attributed to scatter centre due to core-cladding interface defects. The amplifier performance of tellurite glass fiber was investigated by pumping with 980 nm laser diode (LD). The gain coefficient and maximum signal gain were 0.21 dB/mW and 10 dB, respectively, for a pumping power of 120 mW. Gains exceeding 5 dB were obtained over 30 nm bandwidth from 1535 to 1565 nm. The minimum noise figure was 4.8 dB at 1557 nm.
基金supported by the National Natural Science Foundation of China(Grant Nos.61177086,61307046,and 61308086)the West Light Foundation of the Chinese Academy of Sciences(Grant No.Y129261213)
文摘A series of oxyfluoride glasses with the compositions of 75 mol% TeO2, 10 mol% Nb2O5, (15 mol%-x) BaO, x BaF2 (x =0 mol%, 5 mol%, 10 mol%, 15 mol%) doped with Yb2O3 were prepared by the melt-quenching method. Their emission cross-sections, fluorescence lifetimes, and gain properties were investigated by using the absorption spectra and the fluorescence decay curves. The results show that by substituting BaF2 for BaO, the emission cross-section decreases from 1.37 pm^2 to 1.21 pm^2, and the fluorescence lifetime increases from 0.71 ms to 0.96 ms. These properties indicate that this oxyfluoride tellurite glass may have potential uses as the Yb2O3-doped gain medium in a solid laser.
文摘The upconversion luminescence in Er 3+ doped tellurite glasses (MKT: TeO_2-MgO-K_2O) were performed. Two green emission bands at 521 and 550 nm, corresponding to the 2H_ 11/2→4I_ 15/2 and 4S_ 3/2→4I_ 15/2 transitions, respectively, were observed. Coordinate field index, which was proposed by deducing from Pauling′s rules on the basis of Zachariasen′s random network theory, can be used to rationalize the remarkable variation in the intensity of upconversion luminescence.
文摘The Nd^3+-doped pared. The absorption and tellurite glasses were preemission spectra of Nd^3 +- doped tellurite glasses at room temperature were measured. The Judd-Ofelt parameters (Ω2, Ω4, Ω6) of the glasses were calculated from measured absorption spectra. The calculation results of luminescence properties (A, β, τrad, σ) of Nd^3+ ions in the tellurite were glasses were given. Spectroscopic properties, concentration quenching in these kinds of the glasses were investigated. The results indicate that the tellurite glasses with composition of 70% TeO2, 20% ZnO, ( 10 - x ) % La2O3, x % Nd2O3 ( mol% ) show high emission cross section and low phonon energy. The fluorescent intensity and the emission cross section have a maxi- mum value at x = 0.5, namely, the optimum Nd^3 + ion concentration in the tellurite glass is 0.5% (1.93 × 10^20 ions·cm^-3). The fluorescence properties of Nd^3+ measured are basically in accord with the calculated results.
文摘Raman spectra of xLa203-(1-x)TeO2 (x=0, 0.05, 0.10, 0.15, 0.20, and 0.25) lanthanum tellurite glasses were measured and analyzed over the entire glass-forming region in an effort to quantitatively follow the structural changes caused by lanthanum oxide variation. For the first time, systematic intensity measurements have been performed to elucidate the composition induced structural changes in tile high-frequency stretching vibration region and a possible mechanism was proposed. The network structure of the glasses is formed by mixing TeO4 trigonal bipyramid and Te03 trigonal pyramid units. The change of the lanthanum oxide content results in conversion of the TeO4 units to TeO3 units with a varying number of non-bridging oxygen atoms. Analysis of the Raman band contours in terms of vibrations due to different oxygen bridged trigonal bipyramid and trigonal pyramid tellurite structural units, allowed to calculate the relative amounts of the species involved in the structural changes with composition. The fraction of the terminal oxygen atoms has been estimated from the Raman intensities with the aid of a structural model concerning the structure of tellurite network systems. The simulation of the experimental density of lanthanum tellurite glasses with modifier content up to 25% revealed that the short range order building units assumed here are sufficient to account for the overall structure in these glasses.
基金Funded by the National Natural Science Foundation of China (No.s50772102 and 60508014)Program for New Century Excellent Talents in University (No.NCET-07-0786)Zhejiang Province Science and Technology Program (No.2007C21123)
文摘The glass transition temperature (T), crystallization onset temperature (T) and Raman scattering spectra of new tellurite glasses were studied as the function of glass composition. With the introduction of other metal oxides such as Nb2O5, BaO and WO3, T temperature increases, the intensity of exothermal peaks decreases, and thermal stability of tellurite glass improves. It was found that more TeO3 units transformed into TeO4 units and non-bridging oxygen atoms decreased with the incorporating other metal oxides in glassy network, when the content of TeO2 was fixed. Appearance of peak at 920 cm^-1 broadens the Raman bandwidth of tellurite glasses, which is very useful realize high efficient broadband fiber Raman amplifiers.
基金Project supported by National Council for Scientific and Technological Development(CNPq)(#305067/2019-2,#303707/2022-4,#306452/2018-9)the Development of Education and Science and Technology of the State of Mato Grosso do Sul(FUNDECT)(#59/300.634/2016,#71/027.247/2022)。
文摘Nd^(3+)-doped tellurite glasses are promising materials for thermometers based on the fluorescence intensity ratio(FIR)technique.Nevertheless,at high Nd^(3+)concentrations,energy transfer(ET)processes such as optical reabsorption and cross-relaxation can affect the Nd^(3+)emission,which has been little explored in the literature.Therefore,the present work investigated the use of Nd^(3+)-doped tellurite glass(samples doped with Nd^(3+)at 0.2 mol%,0.5 mol%,2.0 mol%,and 4.0 mol%)in fluorescence thermometers,in the temperature range from 299 to 371 K.The results indicate a strong dependence of the FIR parameters on the Nd^(3+)concentration,due to changes in the emission band profiles caused by optical reabsorption of the Nd^(3+)emissions and cross-relaxation processes.A decrease of the relative sensitivity of the ratio^(4)F_(5/2)→^(4)I_(9/2)/^(4)F_(3/2)→^(4)I_(9/2)is observed for samples doped with higher amounts of Nd^(3+).The maximum relative sensitivity at 299 K is 3.00%/K,which is the highest value among the reported Nd^(3+)ions.
基金Project supported by National Natural Science Foundation of China(60979003)New Century Educational Talent Plan of Chinese Education Ministry,China(NCET-10-0171)+2 种基金Fundamental Research Funds for the Central Universities(2011QN153,2012QN065,2012QN068,2012TD018,3132013103,3132013318,3132014088)Foundation of Liaoning Educational Committee(L2013201)the Doctor Startup Foundation of Liaoning Province(20121029)
文摘yD3+/Tm3+ co-doped and yD3+/Ho3+/Tm3+ tri-doped tellurite glasses were synthesized by fusing the mixture of TeO2, PbF2, AIF3, BaF2, Yb2O3, Tm203 and H0203 in a cortmdum crucible at 850 ℃ for 20 min. The synthesized glasses were characterized by upconversion emission spectra under the excitation of 980 nm laser, and the emission colors were investigated according to the CIE-1931 standards. The results indicated that yD3+/Tm3+ co-doped tellurite glass exhibited blue upconversion emission with favor- able color coordinates of (0.20, 0.07). Yb3+, HO3+ and Tm3+ tri-doped tellurite glasses presented white upconversion luminescence under a single 980 nm laser excitation. Moreover, a very wide range of emission colors could be tuned by altering Ho3+ concentration. Combining the contribution of adjusting Ho3+ concentration and pump power, near equal energy white light was obtained.
基金the China Postdoctoral Science Foundation(No.2016M603003)State Key Laboratory of Luminescent Materials and Devices from South China University of Technology(No.2017-skllmd-09)
文摘The power scaling on mid-infrared Raman fibre lasers(RFLs) is in demand for applications in health, environment and security. In this paper, we present the simulated laser behaviours of the tellurite glass RFLs pumped by 300-W Tm-doped fibre lasers(TDFLs) at 2 μm for the first time. By combining the advantages of the TDFLs and tellurite fibre, the output power at 2.35 μm has reached over hundreds of watts by first-order Raman shift. Moreover, the cascaded RFLs have been demonstrated with a wavelength extension greater than 3 μm and output power of tens of watts. To maximize the output power and the slope efficiency of the RFLs, we further analyse the interaction between the Raman gain and cavity loss, which are determined by fibre length and output reflectance of the laser cavity.
基金Project supported by Programa Nacional de Pos-Doutorado(PNPD/CAPES-086/2013)-Brazil。
文摘In this work we repo rt on structural and spect roscopic properties of Yb^3+doped and Pr^3+/Yb^3+co-doped TeO2-Bi2 O3-ZnO-Li2 O-Nb2 O5(TBZLN)tellurite glasses.Bending and stretching modes of TeO2 and Te-OH bond(strong and weak)were analysed from the deconvolution of observed Raman and FT-IR spectra.Based on the absorption measurements,the energy bands of Yb^3+and Pr^3+ions are assigned.The spectroscopic properties for the radiative transitions of Yb^3+and Pr^3+ions were reported using McCumber and Judd-Ofelt theories.Visible emission bands originating from 3 P1 and 3 P0 to lower lying levels of Pr^3+were registered under 447 nm excitation.The emission band around 1334 nm assigned to the Pr3:1 G4→3 H5 was observed when excited at 980 nm.The stimulated emission cross-section(σemi(λ))and effective linewidth(Δλeff)for the 3 P1→3 H6,3 P1→3 H5,3 P0→3 H6,3 P0→3 F2,3 P1→3 F3,3 P1→3 F4,3 P0→3 F4 and 1 G4→3 H5 transitions of Pr^3+are reported.Upconversion luminescence in Pr^3+/Yb^3+codoped glass upon 980 nm excitation was measured.Possible resonant transfer processes between Yb^3+and Pr^3+ions are presented and discussed.The chromaticity co-ordinates were also evaluated from the visible emission spectra showing that Pr^3+/Yb^3+co-doped glass may be suitable for the development of yellow-orange(λexc=447 nm)and near white light(λexc=980 nm)emitting devices in photonics.
基金support fromthe Research Management Centre,University Technology Malaysia (RMC,UTM) through the researchgrants (VOTE ERGS 4L032 and 07J80,MoHE)F.Nawaz extends his gratitude to the financial support by UTM through the International Doctoral Fellowship(UTM.J.10.01/13.14/1/128)
文摘Sm3+/yb3+ co-doped tellurite glasses are prepared by melt-quenching technique. The density of the glasses varies between 4.65 and 4.84 g/cm3. The optical absorption spectra consist of eight bands in the wavelength range of 350-2 000 nm, which correspond to the transitions from ground level 6H5/2 to the various excited states of the Sm3+ ion. Energy band gaps vary in the range of 2.73 2.91 eV, and the Urbach energy ranges from 0.21 to 0.27. Emission spectra exhibit four peaks originating from the 4G5/2 energy level centered at 576, 613, 657, and 718 nm. Quenches in emission bands may be due to the energy transfer from the Sm3+ to Yb3+ ions.
基金This work was supported by Shanghai Science and Technology Foundation(022261046) and the National Natural Science FOundation(60207006)
文摘Upconversion luminescence of Er3+/Yb3+-doped halide tellurite glass is investigated experimentally upon 976-nm excitation. Three intense emissions centered at 525, 545 and 655 nm owing to the transitions 2H11/2-4I15/2, 4S3/2 -4I15/2 and 4F9/2-4I15/2, respectively, are observed when pumping power is as low as 20 mW. The upconversion mechanisms and power dependent intensities are discussed. The high-populated 4I11/2 level is supposed to serve as the intermediate state responsible for the upconversion processes.