Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,a...Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,and soft robotics.Conducting meshes represent a promising alternative to traditional,brittle,metal oxide conductors due to their high electrical conductivity,optical transparency,and enhanced mechanical flexibility.In this paper,we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using selfcracking-assisted templates.Using this method,we produced an electrode with ultra-transparency(97.39%),high conductance(Rs=21.24Ωsq^(−1)),elevated work function(5.16 eV),and good mechanical stability.We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics,organic light-emitting diodes,and flexible transparent memristor devices for neuromorphic computing,resulting in exceptional device performance.In addition,the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility,rendering them a promising option for application in flexible optoelectronics.展开更多
无线Mesh网络(Wireless Mesh network, WMN)中,链路拥塞会导致较长的传输时延和排队时间,因此将链路负载均衡与服务质量结合起来一直是研究热点.本文针对多目标路由优化管理的关键问题,将路由问题表述为整数线性规划(Integer linear pro...无线Mesh网络(Wireless Mesh network, WMN)中,链路拥塞会导致较长的传输时延和排队时间,因此将链路负载均衡与服务质量结合起来一直是研究热点.本文针对多目标路由优化管理的关键问题,将路由问题表述为整数线性规划(Integer linear programming, ILP)模型,并将无线Mesh网络与软件定义网络(Software defined network, SDN)结合,设计了适应于SD-WMN架构的多目标函数、约束条件以及整体的网络优化模型,此外,由于该整数线性规划模型是NP完全的,本文将改进的人工蜂群的启发式优化算法引入到路由优化算法中,以获得源节点和目的节点之间传输流量的理想路径.本文所提出方法在Mininet网络模拟工具中的仿真结果证明了该算法的有效性,与OSPF、SDNR以及遗传蚁群优化(G-ACO)相比,所提出方法在丢包率、往返时间和负载均衡方面均有不错的改善.展开更多
Brain metastases from solid tumours are associated with poor prognosis despite aggressive treatment. Temozolomide can be used for the treatment of glioblastoma multiforme as well as melanoma. It has also been shown to...Brain metastases from solid tumours are associated with poor prognosis despite aggressive treatment. Temozolomide can be used for the treatment of glioblastoma multiforme as well as melanoma. It has also been shown to have activity in patients with brain metastases from various malignancies, since it can cross the blood-brain barrier. To better understand the efficacy of temozolomide in the treatment of brain metastases, we carried out a review of 21 published clinical trials to determine whether temozolomide would benefit patients with brain metastases from solid tumours. Information regarding complete response, partial response, stable disease, objective response and objective response rate were collected to assess clinical outcomes. A modest therapeutic effect was observed when temozolomide was used as a single agent, however, the combination of temozolomide with whole-brain radiotherapy and/or other anticancer drugs exhibited encouraging activity. Thus, future high quality studies are warranted to confirm our findings.展开更多
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor in adults.Current therapy includes surgery,radiation and chemotherapy with temozolomide (TMZ).Major determinants of clinical response to TMZ...Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor in adults.Current therapy includes surgery,radiation and chemotherapy with temozolomide (TMZ).Major determinants of clinical response to TMZ include methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter and mismatch repair (MMR) status.Though the MGMT promoter is methylated in 45% of cases,for the first nine months of follow-up,TMZ does not change survival outcome.Furthermore,MMR deficiency makes little contribution to clinical resistance,suggesting that there exist unrecognized mechanisms of resistance.We generated paired GBM cell lines whose resistance was attributed to neither MGMT nor MMR.We show that,responding to TMZ,these cells exhibit a decoupling of DNA damage response (DDR) from ongoing DNA damages.They display methylation-resistant synthesis in which ongoing DNA synthesis is not inhibited.They are also defective in the activation of the S and G2 phase checkpoint.DDR proteins ATM,Chk2,MDC1,NBS1 and gammaH2AX also fail to form discrete foci.These results demonstrate that failure of DDR may play an active role in chemoresistance to TMZ.DNA damages by TMZ are repaired by MMR proteins in a futile,reiterative process,which activates DDR signaling network that ultimately leads to the onset of cell death.GBM cells may survive genetic insults in the absence of DDR.We anticipate that our findings will lead to more studies that seek to further define the role of DDR in ultimately determining the fate of a tumor cell in response to TMZ and other DNA methylators.展开更多
Objective:Temozolomide(TMZ)is commonly used for glioblastoma multiforme(GBM)chemotherapy.However,drug resistance limits its therapeutic effect in GBM treatment.RNA-binding proteins(RBPs)have vital roles in posttranscr...Objective:Temozolomide(TMZ)is commonly used for glioblastoma multiforme(GBM)chemotherapy.However,drug resistance limits its therapeutic effect in GBM treatment.RNA-binding proteins(RBPs)have vital roles in posttranscriptional events.While disturbance of RBP-RNA network activity is potentially associated with cancer development,the precise mechanisms are not fully known.The SNRPG gene,encoding small nuclear ribonucleoprotein polypeptide G,was recently found to be related to cancer incidence,but its exact function has yet to be elucidated.Methods:SNRPG knockdown was achieved via short hairpin RNAs.Gene expression profiling and Western blot analyses were used to identify potential glioma cell growth signaling pathways affected by SNRPG.Xenograft tumors were examined to determine the carcinogenic effects of SNRPG on glioma tissues.Results:The SNRPG-mediated inhibitory effect on glioma cells might be due to the targeted prevention of Myc and p53.In addition,the effects of SNRPG loss on p53 levels and cell cycle progression were found to be Myc-dependent.Furthermore,SNRPG was increased in TMZ-resistant GBM cells,and downregulation of SNRPG potentially sensitized resistant cells to TMZ,suggesting that SNRPG deficiency decreases the chemoresistance of GBM cells to TMZ via the p53 signaling pathway.Our data confirmed that SNRPG suppression sensitizes GBM cells to TMZ by targeting Myc via the p53 signaling cascade.Conclusions:These results indicated that SNRPG is a probable molecular target of GBM and suggested that suppressing SNRPG in resistant GBM cells might be a substantially beneficial method for overcoming essential drug resistance.展开更多
Glioblastoma(GBM)is the most common malignant brain tumor.Although current treatment strategies,including surgery,chemotherapy,and radiotherapy,have achieved clinical effects and prolonged the survival of patients,the...Glioblastoma(GBM)is the most common malignant brain tumor.Although current treatment strategies,including surgery,chemotherapy,and radiotherapy,have achieved clinical effects and prolonged the survival of patients,the gradual development of resistance against current therapies has led to a high recurrence rate and treatment failure.Mechanisms underlying the development of resistance involve multiple factors,including drug efflux,DNA damage repair,glioma stem cells,and a hypoxic tumor environment,which are usually correlative and promote each other.As many potential therapeutic targets have been discovered,combination therapy that regulates multiple resistance-related molecule pathways is considered an attractive strategy.In recent years,nanomedicine has revolutionized cancer therapies with optimized accumulation,penetration,internalization,and controlled release.Blood-brain barrier(BBB)penetration efficiency is also significantly improved through modifying ligands on nanomedicine and interacting with the receptors or transporters on the BBB.Moreover,different drugs for combination therapy usually process different pharmacokinetics and biodistribution,which can be further optimized with drug delivery systems to maximize the therapeutic efficiency of combination therapies.Herein the current achievements in nanomedicine-based combination therapy for GBM are discussed.This review aimed to provide a broader understanding of resistance mechanisms and nanomedicine-based combination therapies for future research on GBM treatment.展开更多
O6-methylguanine DNA methyltransferase(MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cell...O6-methylguanine DNA methyltransferase(MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells(GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide(TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line(SF-767) and 7 MGMT-negative cell lines(U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB(NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines(P < 0.05). However, there was no significant difference in the 50% inhibition concentration(IC50) of TMZ between MGMT-positive and MGMT-negative GSCs(P > 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132(an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone(P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.展开更多
Objective: The aim of our study was to investigate the treatment of recurrent central nervous system lymphoma. Methods: A case of recurrent central nervous system lymphoma in a 46-year-old male was treated with temo...Objective: The aim of our study was to investigate the treatment of recurrent central nervous system lymphoma. Methods: A case of recurrent central nervous system lymphoma in a 46-year-old male was treated with temozolomide 150 mg/m2 per day for 5 days; rituximab 750 mg/m2 on dl and d8, injected from Ommaya capsule to lateral ventricle, cycles were repeated every 28 days. Results: The patient achieved complete remission and the side effects was light after the treatment. Conclusion: Using this therapy method had certain curative effect on recurrent central nervous system lymphoma. Further studies should be needed on its indication.展开更多
Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion...Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion.The primary cilia were examined by immunostaining with Arl13 b andγ-tubulin,and the cellular resistance ability was measured by cell viability assay or survival fraction assay.Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride,the autophagy was measured by acridine orange staining assay.The DNA damage repair ability was estimated by the kinetic curve ofγH2 AX foci,and the DNAdependent protein kinase(DNA-PK)activation was detected by immunostaining assay.Results Primary cilia were frequently preserved in GBM,and the induction of ciliogenesis decreased cell proliferation.TMZ and IR promoted ciliogenesis in dose-and time-dependent manners,and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR.The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair.The interference of ciliogenesis reduced DNA-PK activation,and the knockdown of DNA-PK led to cilium formation and elongation.Conclusion Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.展开更多
High grade gliomas are always the research focus in the field of neurosurgery due to their poor prognosis despite the current standard therapeutic regimen of surgical resection followed by radiation therapy and chemot...High grade gliomas are always the research focus in the field of neurosurgery due to their poor prognosis despite the current standard therapeutic regimen of surgical resection followed by radiation therapy and chemotherapy. Alkylating agent temozolomide has been established as the standard chemotherapy while its resistance inevitable during treatment. This phenomenon seriously influences the prognosis of patients suffering from high grade gliomas. This review aims to elucidate temozolomide chemoresistance mechanisms through three chapters including O^6-methylguanine-DNA methyltransferase(MGMT) methylation, mismatch repair mutation and epigenetic regulation consisting of p21, chromatin and histone, Y-box binding protein-1 and micro RNAs.展开更多
Background: Despite advances in surgical and first-line adjuvant treatment, glioblastoma multiforme (GBM) always recurs as disease natural history. Currently, there is no consensus as to the optimal second-line treatm...Background: Despite advances in surgical and first-line adjuvant treatment, glioblastoma multiforme (GBM) always recurs as disease natural history. Currently, there is no consensus as to the optimal second-line treatment of recurrent GBM. Patients and Methods: This is a retrospective study of a series of adult patients consecutively treated at a single institution for supratentorial cerebral GBM at first relapse. All patients had previously received the standard concomitant radiochemotherapy protocol as first-line therapy. At recurrence/progression, all patients were treated with a metronomic temozolomide (TMZ) schedule at a daily dosage of 50 mg/m2 of body surface. Radiologic, clinical, and laboratory data were collected for all patients, with a minimum follow-up of 18 months. Results: From January 2010 to June 2011, 43 patients were treated at our facility. A mean of 10 metronomic TMZ cycles (range, 3 - 21) was administered. Radiologically, we observed 2 complete responses (4.6%), 16 partial responses (37.2%), 18 stable disease (41.9%) and 7 progressive disease (16.3%). Steroids administration was safely tapered in 23 patients (53.5%). Karnofsky-Performance-Status (KPS) results improved in 20 patients (46.5%), stabilized in 20 (46.5%), and worsened in 3 patients (7.0%), with a mean KPS score increased from 65.1 at baseline to 75.3 at follow-up. Six-month progression-free survival was 53.5. One year after recurrence/progression diagnosis, 22 patients were still alive, with a 1-year overall survival rate of 51.6%. Conclusions: The proposed TMZ schedule seems a safe and effective option for patients with recurrent GBM, with high radiologic response rates and good clinical impact. Strict clinical observation of patients may enable obtaining better results than those already present in the literature and further investigation appears auspicable.展开更多
Objective: To investigate the role of adiponectin in human glioma cell lines against the temozolomide and the molecular regulation mechanism. Methods: Human glioma cell lines U251 and U-87MG were cultured in Dulbecco...Objective: To investigate the role of adiponectin in human glioma cell lines against the temozolomide and the molecular regulation mechanism. Methods: Human glioma cell lines U251 and U-87MG were cultured in Dulbecco’s modified eagle medium (DMEM) containing 4500 mg/L glucose. MTT was used to measure cell growth ratio. Western blot was used to detect the protein levels of autophagy-related protein (Beclin 1, LC3 I/II, p62) and phosphorylated AMPK (p-AMPK) in human glioma cell lines. After AICAR and Compound C were administered, the change of p-AMPK and the autophagy level were examined by western blot. Results: While adiponectin stimulates AMPK in phosphatase and up-regulates the level of autophagy, human glioma cell lines obtain more resistance against the temozolomide, which is facilitated by AICAR and weakened by Compound C. Conclusion: As an important adipokine, adiponectin can up-regulate the glioma cell autophagy by activating the AMPK signaling pathway which increases the resistance of glioma cells to temozolomide.展开更多
Objective: The aim of our study was to analyze the long-term results of rituximab combined with temozolomide in treatment of elderly patients (> 60 years) with relapsed primary central nervous system lymphoma (PCNS...Objective: The aim of our study was to analyze the long-term results of rituximab combined with temozolomide in treatment of elderly patients (> 60 years) with relapsed primary central nervous system lymphoma (PCNSL). Methods: Twelve postoperative elderly patients (> 60 years) were treated between August 2004 and October 2009. Temozolomide 100 mg/m2 to 200 mg/m2 days 1 to 7 and 15 to 21 and rituximab 375 mg/m2 days 1, 5, 8, 22. The maximum number of rituximab cycles was two. After one or two cycles of this combination, patients with an objective response and an acceptable level of toxicity continued treatment with single agent temozolomide (days 1 to 5, every 28 days). The overall survival was analyzed by using Kaplan-Meier. Results: The overall survival was 9 months. Toxicity was very mild with no grade 3-4 neurotoxicity toxic events. Conclusion: Rituximab combined with temozolomide seems to yields substantial long-term survival with moderate toxicity for the treatment of elderly relapsed PCNSL.展开更多
基金supported by a National Research Foundation of Korea(NRF)grant(No.2016R1A3B 1908249)funded by the Korean government.
文摘Mechanically durable transparent electrodes are essential for achieving long-term stability in flexible optoelectronic devices.Furthermore,they are crucial for applications in the fields of energy,display,healthcare,and soft robotics.Conducting meshes represent a promising alternative to traditional,brittle,metal oxide conductors due to their high electrical conductivity,optical transparency,and enhanced mechanical flexibility.In this paper,we present a simple method for fabricating an ultra-transparent conducting metal oxide mesh electrode using selfcracking-assisted templates.Using this method,we produced an electrode with ultra-transparency(97.39%),high conductance(Rs=21.24Ωsq^(−1)),elevated work function(5.16 eV),and good mechanical stability.We also evaluated the effectiveness of the fabricated electrodes by integrating them into organic photovoltaics,organic light-emitting diodes,and flexible transparent memristor devices for neuromorphic computing,resulting in exceptional device performance.In addition,the unique porous structure of the vanadium-doped indium zinc oxide mesh electrodes provided excellent flexibility,rendering them a promising option for application in flexible optoelectronics.
文摘无线Mesh网络(Wireless Mesh network, WMN)中,链路拥塞会导致较长的传输时延和排队时间,因此将链路负载均衡与服务质量结合起来一直是研究热点.本文针对多目标路由优化管理的关键问题,将路由问题表述为整数线性规划(Integer linear programming, ILP)模型,并将无线Mesh网络与软件定义网络(Software defined network, SDN)结合,设计了适应于SD-WMN架构的多目标函数、约束条件以及整体的网络优化模型,此外,由于该整数线性规划模型是NP完全的,本文将改进的人工蜂群的启发式优化算法引入到路由优化算法中,以获得源节点和目的节点之间传输流量的理想路径.本文所提出方法在Mininet网络模拟工具中的仿真结果证明了该算法的有效性,与OSPF、SDNR以及遗传蚁群优化(G-ACO)相比,所提出方法在丢包率、往返时间和负载均衡方面均有不错的改善.
文摘Brain metastases from solid tumours are associated with poor prognosis despite aggressive treatment. Temozolomide can be used for the treatment of glioblastoma multiforme as well as melanoma. It has also been shown to have activity in patients with brain metastases from various malignancies, since it can cross the blood-brain barrier. To better understand the efficacy of temozolomide in the treatment of brain metastases, we carried out a review of 21 published clinical trials to determine whether temozolomide would benefit patients with brain metastases from solid tumours. Information regarding complete response, partial response, stable disease, objective response and objective response rate were collected to assess clinical outcomes. A modest therapeutic effect was observed when temozolomide was used as a single agent, however, the combination of temozolomide with whole-brain radiotherapy and/or other anticancer drugs exhibited encouraging activity. Thus, future high quality studies are warranted to confirm our findings.
基金supported by NIH grants 5-P50-NS20023 and NS030245 (Darell D. Bigner)a grant from the Pediatric Brain Tumor Foundation (Henry S. Friedman)
文摘Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor in adults.Current therapy includes surgery,radiation and chemotherapy with temozolomide (TMZ).Major determinants of clinical response to TMZ include methylation status of the O6-methylguanine-DNA methyltransferase (MGMT) promoter and mismatch repair (MMR) status.Though the MGMT promoter is methylated in 45% of cases,for the first nine months of follow-up,TMZ does not change survival outcome.Furthermore,MMR deficiency makes little contribution to clinical resistance,suggesting that there exist unrecognized mechanisms of resistance.We generated paired GBM cell lines whose resistance was attributed to neither MGMT nor MMR.We show that,responding to TMZ,these cells exhibit a decoupling of DNA damage response (DDR) from ongoing DNA damages.They display methylation-resistant synthesis in which ongoing DNA synthesis is not inhibited.They are also defective in the activation of the S and G2 phase checkpoint.DDR proteins ATM,Chk2,MDC1,NBS1 and gammaH2AX also fail to form discrete foci.These results demonstrate that failure of DDR may play an active role in chemoresistance to TMZ.DNA damages by TMZ are repaired by MMR proteins in a futile,reiterative process,which activates DDR signaling network that ultimately leads to the onset of cell death.GBM cells may survive genetic insults in the absence of DDR.We anticipate that our findings will lead to more studies that seek to further define the role of DDR in ultimately determining the fate of a tumor cell in response to TMZ and other DNA methylators.
基金supported by grants from National Natural Science Foundation of China(Grant No.81372714,81672480,81872065,and 81802506)Liaoning Provincial Natural Science Foundation of China(Grant No.201602244)+3 种基金Liaoning Province Innovation Talents Support Program in Colleges and Universities(Grant No.LR2016023)Distinguished Professor Project of Liaoning ProvinceSpecial Grant for Translational Medicine,Dalian Medical University(Grant No.2015002)Basic Research Projects in Colleges and Universities of Liaoning Province(Grant No.LQ2017033)。
文摘Objective:Temozolomide(TMZ)is commonly used for glioblastoma multiforme(GBM)chemotherapy.However,drug resistance limits its therapeutic effect in GBM treatment.RNA-binding proteins(RBPs)have vital roles in posttranscriptional events.While disturbance of RBP-RNA network activity is potentially associated with cancer development,the precise mechanisms are not fully known.The SNRPG gene,encoding small nuclear ribonucleoprotein polypeptide G,was recently found to be related to cancer incidence,but its exact function has yet to be elucidated.Methods:SNRPG knockdown was achieved via short hairpin RNAs.Gene expression profiling and Western blot analyses were used to identify potential glioma cell growth signaling pathways affected by SNRPG.Xenograft tumors were examined to determine the carcinogenic effects of SNRPG on glioma tissues.Results:The SNRPG-mediated inhibitory effect on glioma cells might be due to the targeted prevention of Myc and p53.In addition,the effects of SNRPG loss on p53 levels and cell cycle progression were found to be Myc-dependent.Furthermore,SNRPG was increased in TMZ-resistant GBM cells,and downregulation of SNRPG potentially sensitized resistant cells to TMZ,suggesting that SNRPG deficiency decreases the chemoresistance of GBM cells to TMZ via the p53 signaling pathway.Our data confirmed that SNRPG suppression sensitizes GBM cells to TMZ by targeting Myc via the p53 signaling cascade.Conclusions:These results indicated that SNRPG is a probable molecular target of GBM and suggested that suppressing SNRPG in resistant GBM cells might be a substantially beneficial method for overcoming essential drug resistance.
基金supported by the National Key Research and Development Programs of China(Grant No.2018YFA0209700)National Natural Science Foundation of China(Grant No.22077073)+1 种基金Frontiers Science Center for New Organic Matter,Nankai University(Grant No.63181206)the Fundamental Research Funds for the Central Universities,Nankai University(Grant No.63206015)。
文摘Glioblastoma(GBM)is the most common malignant brain tumor.Although current treatment strategies,including surgery,chemotherapy,and radiotherapy,have achieved clinical effects and prolonged the survival of patients,the gradual development of resistance against current therapies has led to a high recurrence rate and treatment failure.Mechanisms underlying the development of resistance involve multiple factors,including drug efflux,DNA damage repair,glioma stem cells,and a hypoxic tumor environment,which are usually correlative and promote each other.As many potential therapeutic targets have been discovered,combination therapy that regulates multiple resistance-related molecule pathways is considered an attractive strategy.In recent years,nanomedicine has revolutionized cancer therapies with optimized accumulation,penetration,internalization,and controlled release.Blood-brain barrier(BBB)penetration efficiency is also significantly improved through modifying ligands on nanomedicine and interacting with the receptors or transporters on the BBB.Moreover,different drugs for combination therapy usually process different pharmacokinetics and biodistribution,which can be further optimized with drug delivery systems to maximize the therapeutic efficiency of combination therapies.Herein the current achievements in nanomedicine-based combination therapy for GBM are discussed.This review aimed to provide a broader understanding of resistance mechanisms and nanomedicine-based combination therapies for future research on GBM treatment.
基金supported by the National Natural Science Foundation of China(No.30772551)the Science &Technology Program of Guangdong Province(No.2011B031800178)+1 种基金National High-technology Research and Development Program of China(No.2012AA02A508)Specialized Research Fund for the Doctoral Program of Higher Education(No.20110171110076)
文摘O6-methylguanine DNA methyltransferase(MGMT) can remove DNA alkylation adducts, thereby repairing damaged DNA and contributing to the drug resistance of gliomas to alkylating agents. In addition, glioma stem-like cells(GSCs) have been demonstrated to be involved in the recurrence and treatment resistance of gliomas. In this study, we aimed to investigate MGMT expression and regulatory mechanisms in GSCs and the association of MGMT with temozolomide(TMZ) sensitivity. GSCs were enriched from one MGMT-positive cell line(SF-767) and 7 MGMT-negative cell lines(U251, SKMG-4, SKMG-1, SF295, U87, MGR1, and MGR2) through serum-free clone culture. GSCs from the U251G, SKMG-4G, SF295G, and SKMG-1G cell lines became MGMT-positive, but those from the U87G, MGR1G, and MGR2G cell lines remained MGMT-negative. However, all the GSCs and their parental glioma cell lines were positive for nuclear factor-κB(NF-κB). In addition, GSCs were more resistant to TMZ than their parental glioma cell lines(P < 0.05). However, there was no significant difference in the 50% inhibition concentration(IC50) of TMZ between MGMT-positive and MGMT-negative GSCs(P > 0.05). When we treated the MGMT-positive GSCs with TMZ plus MG-132(an NF-κB inhibitor), the antitumor activity was significantly enhanced compared to that of GSCs treated with TMZ alone(P < 0.05). Furthermore, we found that MGMT expression decreased through the down-regulation of NF-κB expression by MG-132. Our results show that MG-132 may inhibit NF-κB expression and further decrease MGMT expression, resulting in a synergistic effect on MGMT-positive GSCs. These results indicate that enhanced MGMT expression contributes to TMZ resistance in MGMT-positive GSCs.
文摘Objective: The aim of our study was to investigate the treatment of recurrent central nervous system lymphoma. Methods: A case of recurrent central nervous system lymphoma in a 46-year-old male was treated with temozolomide 150 mg/m2 per day for 5 days; rituximab 750 mg/m2 on dl and d8, injected from Ommaya capsule to lateral ventricle, cycles were repeated every 28 days. Results: The patient achieved complete remission and the side effects was light after the treatment. Conclusion: Using this therapy method had certain curative effect on recurrent central nervous system lymphoma. Further studies should be needed on its indication.
基金supported by the National Natural Sciences Foundation of China[31870851 and 31471953]the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences[2019PT320005]+1 种基金the Science and Technology Research Project of Gansu Province[145RTSA012 and 20JR5RA555]the Youth Innovation Promotion Association CAS[2021415]
文摘Objective To investigate the function of primary cilia in regulating the cellular response to temozolomide(TMZ)and ionizing radiation(IR)in glioblastoma(GBM).Methods GBM cells were treated with TMZ or X-ray/carbon ion.The primary cilia were examined by immunostaining with Arl13 b andγ-tubulin,and the cellular resistance ability was measured by cell viability assay or survival fraction assay.Combining with cilia ablation by IFT88 depletion or chloral hydrate and induction by lithium chloride,the autophagy was measured by acridine orange staining assay.The DNA damage repair ability was estimated by the kinetic curve ofγH2 AX foci,and the DNAdependent protein kinase(DNA-PK)activation was detected by immunostaining assay.Results Primary cilia were frequently preserved in GBM,and the induction of ciliogenesis decreased cell proliferation.TMZ and IR promoted ciliogenesis in dose-and time-dependent manners,and the suppression of ciliogenesis significantly enhanced the cellular sensitivity to TMZ and IR.The inhibition of ciliogenesis elevated the lethal effects of TMZ and IR via the impairment of autophagy and DNA damage repair.The interference of ciliogenesis reduced DNA-PK activation,and the knockdown of DNA-PK led to cilium formation and elongation.Conclusion Primary cilia play a vital role in regulating the cellular sensitivity to TMZ and IR in GBM cells through mediating autophagy and DNA damage repair.
基金Scientific Research Project of Science and Technology Committee of Shanghai Municipality, 14DZ1930303
文摘High grade gliomas are always the research focus in the field of neurosurgery due to their poor prognosis despite the current standard therapeutic regimen of surgical resection followed by radiation therapy and chemotherapy. Alkylating agent temozolomide has been established as the standard chemotherapy while its resistance inevitable during treatment. This phenomenon seriously influences the prognosis of patients suffering from high grade gliomas. This review aims to elucidate temozolomide chemoresistance mechanisms through three chapters including O^6-methylguanine-DNA methyltransferase(MGMT) methylation, mismatch repair mutation and epigenetic regulation consisting of p21, chromatin and histone, Y-box binding protein-1 and micro RNAs.
文摘Background: Despite advances in surgical and first-line adjuvant treatment, glioblastoma multiforme (GBM) always recurs as disease natural history. Currently, there is no consensus as to the optimal second-line treatment of recurrent GBM. Patients and Methods: This is a retrospective study of a series of adult patients consecutively treated at a single institution for supratentorial cerebral GBM at first relapse. All patients had previously received the standard concomitant radiochemotherapy protocol as first-line therapy. At recurrence/progression, all patients were treated with a metronomic temozolomide (TMZ) schedule at a daily dosage of 50 mg/m2 of body surface. Radiologic, clinical, and laboratory data were collected for all patients, with a minimum follow-up of 18 months. Results: From January 2010 to June 2011, 43 patients were treated at our facility. A mean of 10 metronomic TMZ cycles (range, 3 - 21) was administered. Radiologically, we observed 2 complete responses (4.6%), 16 partial responses (37.2%), 18 stable disease (41.9%) and 7 progressive disease (16.3%). Steroids administration was safely tapered in 23 patients (53.5%). Karnofsky-Performance-Status (KPS) results improved in 20 patients (46.5%), stabilized in 20 (46.5%), and worsened in 3 patients (7.0%), with a mean KPS score increased from 65.1 at baseline to 75.3 at follow-up. Six-month progression-free survival was 53.5. One year after recurrence/progression diagnosis, 22 patients were still alive, with a 1-year overall survival rate of 51.6%. Conclusions: The proposed TMZ schedule seems a safe and effective option for patients with recurrent GBM, with high radiologic response rates and good clinical impact. Strict clinical observation of patients may enable obtaining better results than those already present in the literature and further investigation appears auspicable.
文摘Objective: To investigate the role of adiponectin in human glioma cell lines against the temozolomide and the molecular regulation mechanism. Methods: Human glioma cell lines U251 and U-87MG were cultured in Dulbecco’s modified eagle medium (DMEM) containing 4500 mg/L glucose. MTT was used to measure cell growth ratio. Western blot was used to detect the protein levels of autophagy-related protein (Beclin 1, LC3 I/II, p62) and phosphorylated AMPK (p-AMPK) in human glioma cell lines. After AICAR and Compound C were administered, the change of p-AMPK and the autophagy level were examined by western blot. Results: While adiponectin stimulates AMPK in phosphatase and up-regulates the level of autophagy, human glioma cell lines obtain more resistance against the temozolomide, which is facilitated by AICAR and weakened by Compound C. Conclusion: As an important adipokine, adiponectin can up-regulate the glioma cell autophagy by activating the AMPK signaling pathway which increases the resistance of glioma cells to temozolomide.
文摘Objective: The aim of our study was to analyze the long-term results of rituximab combined with temozolomide in treatment of elderly patients (> 60 years) with relapsed primary central nervous system lymphoma (PCNSL). Methods: Twelve postoperative elderly patients (> 60 years) were treated between August 2004 and October 2009. Temozolomide 100 mg/m2 to 200 mg/m2 days 1 to 7 and 15 to 21 and rituximab 375 mg/m2 days 1, 5, 8, 22. The maximum number of rituximab cycles was two. After one or two cycles of this combination, patients with an objective response and an acceptable level of toxicity continued treatment with single agent temozolomide (days 1 to 5, every 28 days). The overall survival was analyzed by using Kaplan-Meier. Results: The overall survival was 9 months. Toxicity was very mild with no grade 3-4 neurotoxicity toxic events. Conclusion: Rituximab combined with temozolomide seems to yields substantial long-term survival with moderate toxicity for the treatment of elderly relapsed PCNSL.