The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic...The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.展开更多
In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed ...In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed on primary and shield coils. The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils. The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature. To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coll's winding pattern, the selection of a penalty factor is discussed in detail.展开更多
Since the high efficiency discharge is critical to the radio-frequency ion thruster(RIT), a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT. The fluid method and the drift energy...Since the high efficiency discharge is critical to the radio-frequency ion thruster(RIT), a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT. The fluid method and the drift energy correction of the electron energy distribution function(EEDF) are applied to the analysis of the RIT discharge. In the meantime, the PIC-MCC method is used to investigate the ion beam current extraction character for the plasma plume region. The beam current simulation results, with the hybrid model, agree well with the experimental results, and the error is lower than 11%, which shows the validity of the model. The further study shows there is an optimal ratio for the radio-frequency(RF) power and the beam current extraction power under the fixed RIT configuration. And the beam extraction efficiency will decrease when the discharge efficiency beyond a certain threshold(about 87 W). As the input parameters of the hybrid model are all the design values, it can be directly used to the optimum design for other kinds of RITs and radio-frequency ion sources.展开更多
In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including contin...In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to- argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.展开更多
Objective: To evaluate the hemodynamic changes of hepatic artery (HA), portal vein (PV) and tumors in hepatic cancer patients treated by cluster electrode radio-frequency ablation with the aid of color Doppler flow im...Objective: To evaluate the hemodynamic changes of hepatic artery (HA), portal vein (PV) and tumors in hepatic cancer patients treated by cluster electrode radio-frequency ablation with the aid of color Doppler flow imaging (CDFI). Methods: The hemodynamic changes of HA, PV and 42 tumors in 30 cases of hepatic cancer were investi- gated by CDFI one week before and after cluster e- lectrode radio-frequency ablation. Results: One week after radio-frequency ablation, the velocity of HA decreased (P<0.05), but the dia- meter and velocity of PV unchanged. Before radio- frequency ablation, blood signals were observed in 35 cancer nodes (83.0 % of all 42 nodes). After radio- frequency ablation, blood signals were reduced in 15 nodes and disappeared in 14 nodes. Early investiga- tion implied that the decrease of blood supply was parallel with the reduction of node size. However, the outcome in case of huge nodes with double blood supply was not as promising as those small nodes. Conclusion: CDFI is useful to assess blood supply in ablation of hepatic cancer by using cluster electrode radio-frequency therapy.展开更多
Cold atmospheric plasmas(CAPs)have shown great applicability in agriculture.Many kinds of CAP sources have been studied in agricultural applications to promote plant growth and cure plant diseases.We briefly review th...Cold atmospheric plasmas(CAPs)have shown great applicability in agriculture.Many kinds of CAP sources have been studied in agricultural applications to promote plant growth and cure plant diseases.We briefly review the state-of-the-art stimulating effects of atmospheric-pressure dielectricbarrier-discharge(AP-DBD)plasmas,after the direct or indirect treatment of plants for growth promotion and disease control.We then discuss the special demands on the characteristics of the CAP sources for their applications in plant mutation breeding.An atmospheric and room temperature plasma(ARTP)jet generator with a large plasma irradiation area,a high enough concentration of chemically reactive species and a low gas temperature is designed for direct plant mutagenesis.Experimental measurements of the electrical,thermal and optical features of the ARTP generator are conducted.Then,an ARTP-P(ARTP for plant mutagenesis)mutation breeding machine is developed,and a typical case of plant mutation breeding by the ARTP-P mutation machine is presented using Coreopsis tinctoria Nutt.seeds.Physical and agricultural experiments show that the newly-developed ARTP-P mutation breeding machine with a large irradiation area can generate uniform CAP jets with high concentrations of chemically reactive species and mild gas temperatures,and have signiflcant mutagenesis effects on the Coreopsis tinctoria Nutt.seeds.The ARTP-P mutation breeding machine may provide a platform for systematic studies on mutation mechanisms and results for various plant seeds under different operating conditions in future research.展开更多
A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as...A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as a aseful way to improve Q0 of the superconducting cavity in recent years. N-doping researches with 1.3 GHz single cell cavities are carried out at Peking University and the preliminary results are promising. Our recipe is slightly different from other laboratories. After 250μm polishing, high pressure rinsing and 3 h high temperature annealing, the cavities are nitrogen doped at 2.7-4.0Pa for 20rain and then followed by 15μm electropolishing. Vertical test results show that Q0 of a 1.3 GHz single cell cavity made of large grain niobium has increased to 4 ×10 10 at 2.0K and medium gradient.展开更多
Indium tin oxide(ITO)thin films(100±10nm)were deposited on PC(polycarbonate)and glass substrates by rf(radio-frequency)mannetron spuutering.The oxygen content of the ITO films was changed by variation of ...Indium tin oxide(ITO)thin films(100±10nm)were deposited on PC(polycarbonate)and glass substrates by rf(radio-frequency)mannetron spuutering.The oxygen content of the ITO films was changed by variation of the sputtering gas composition.All the other deposition parameters were kept constant.The sheet resistance.optical transmittance and microstructure of ITO films were investigated using a four-point probe.spectrophotometer,X-ray diffractometer(XRD)and atomic force microscope(AFM).Sheet resistances for the ITO films with optical transmittance more than 75% on PC substrates varied from 40Ω/cm^2 to more than 104 Ω/cm^2 with increasing oxygen partial pressure from O to about 2%.The same tendeney of sheet resistances increasing with increasing oxygen partial pressure was observed on glass substrates.The X-ray diffraction data indicated polycrystalline filns with grain orientations predominantly along(440)and (422)directions.The intensities of (440)and (422)peaks increased slightly with the increase of oxygen partial pressure both on PC and glass substrates.The AFM images show that the ITO films on PC substrates were dense and uniform.The average grain size of the films was about 40nm.展开更多
The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to ...The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as a mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion. In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathodc under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the mode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the a mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.展开更多
In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Ga...In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Gauss in the driver region,destabilizing the discharge.The magnetic shield technique is proposed in this work to reduce the magnetic field in the driver region and improve the discharge characteristics.In this paper,a three-dimensional fluid model is developed within COMSOL to study the influence of the magnetic shield on the generation and transport of plasmas in the negative hydrogen ion source.It is found that when the magnetic shield material is applied at the interface of the expansion region and the driver region,the electron density can be effectively increased.For instance,the maximum of the electron density is 6.7×10^(17)m^(-3)in the case without the magnetic shield,and the value increases to 9.4×10^(17)m^(-3)when the magnetic shield is introduced.展开更多
We utilize an electromagnetically induced transparency(EIT) of a three-level cascade system involving Rydberg state in a room-temperature cell, formed with a cesium 6 S_(1/2)–6 P_(3/2)–66 S_(1/2) scheme, to investig...We utilize an electromagnetically induced transparency(EIT) of a three-level cascade system involving Rydberg state in a room-temperature cell, formed with a cesium 6 S_(1/2)–6 P_(3/2)–66 S_(1/2) scheme, to investigate the Autler–Townes(AT)splitting resulting from a 15.21-GHz radio-frequency(RF) field that couples the |66 S_(1/2) → |65 P_(1/2) Rydberg transition.The radio-frequency electric field induced AT splitting, γAT, is defined as the peak-to-peak distance of an EIT-AT spectrum.The dependence of AT splitting γAT on the probe and coupling Rabi frequency, ?_p and ?_c, is investigated. It is found that the EIT-AT splitting strongly depends on the EIT linewidth that is related to the probe and coupling Rabi frequency in a weak RF-field regime. Using a narrow linewidth EIT spectrum would decrease the uncertainty of the RF field measurements.This work provides new experimental evidence for the theoretical framework in [J. Appl. Phys. 121, 233106(2017)].展开更多
Objective To investigate and compare the effect of radio-frequency (RF) field exposure on expression of heat shock proteins (Hsps) in three human glioma cell lines (MO54, A172, and T98). Methods Cells were expos...Objective To investigate and compare the effect of radio-frequency (RF) field exposure on expression of heat shock proteins (Hsps) in three human glioma cell lines (MO54, A172, and T98). Methods Cells were exposed to sham or 1950 MHz continuous-wave for 1 h. Specific absorption rates (SARs) were 1 and 10 W/kg. Localization and expression of Hsp27 and phosphorylated Hsp27 ((78) Ser) (p-Hsp27) were examined by immunocytochemistry. Expression levels of Hsp27, p-Hs27, and Hsp70 were determined by Western blotting. Results The Hsp27 was primarily located within the cytoplasm, p-Hsp27 in both cytoplasm and nuclei of MO54, A172, and T98 cells. RF field exposure did not affect the distribution or expression of Hsp27. In addition, Western blotting showed no significant differences in protein expression of Hsp27 or HspT0 between sham- and RF field-exposed cells at a SAR of 1 W/kg and 10 W/kg for 1 h in three cells lines. Exposure to RF field at a SAR of 10 W/kg for 1 h slightly decreased the protein level of phosphorylated Hsp27 in MO54 cells. Conclusion The 1950 MHz RF field has only little or no apparent effect on Hsp70 and Hsp27 expression in MO54, A172, and T98 cells.展开更多
La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by...La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by XRD and SEM, and the results indicate that the thin films are grown with mainly (100) oriented and columnar structures. The ferroelectricity and piezoelectricity of the BI-PT films are also measured, and the measured results illustrate that both performances are effectively improved by the La-doping with suitable concentrations. These results will open up wide potential applications of the films in electronic devices.展开更多
The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCN...The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCNO electrodes were prepared to study the oxygen reduction reaction at intermediate temperature.The Rietveld refinement of syn-thesized material shows a hexagonal structure with the R-3c space group of the prepared perovskite material.Lattice parameter and fractional coordinates were utilized to calculate the oxygen ion diffusion coefficient for molecular dynamic simulation.At 973 K,the oxygen ion diffusion of LSCNO was 1.407×10^(-8)cm^(2)s^(-1) higher by order of one magnitude than that of the La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(7.751×10^(-9)cm^(2)^(-1)).The results suggest that the Nb doping provide the structural stability which improves oxygen anion diffusion.The enhanced structural stability was analysed by the thermal expansion coefficient calculated experimentally and from molecular dynamics simulations.Furthermore,the density functional theory calculation revealed the role of Nb dopant for oxygen vacancy formation energy at Sr-0 and La-O planes is lower than the undoped structure.To understand the rate-limiting process for sluggish oxygen diffusion kinetics,80 nm and 40 nm thin films were fabricated using radio frequency magnetron sputtering on gadolinium doped ceria electrolyte substrate.The impedance was observed to increase with an increasing thickness,suggesting the bulk diffusion as a rate-limiting step for oxygen ion diffu-sion.The electrochemical performance was analysed for the thin-flm symmetric solid oxide fuel cell,which achieved a peak power density of 390 mW cm^(-2) at 1.02 V in the presence of H_(2) fuel on the anode side and air on the cathode side.展开更多
High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic targe...High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic target.The effect of substrate temperature on the structural,electrical and optical performances of ZTO films has been studied.X-ray diffraction (XRD) results show that ZTO films possess tetragonal rutile structure with the preferred orientation of (101).The surface morphology and roughness of the films was investigated by the atomic force microscope (AFM).The electrical characteristic (including carrier concentration,Hall mobility and resistivity) and optical transmittance were studied by the Hall tester and UV- VIS,respectively.The highest carrier concentration of -1.144×1020 cm-3 and the Hall mobility of 7.018 cm2(V ·sec)-1 for the film with an average transmittance of about 80.0% in the visible region and the lowest resistivity of 1.116×10-2 Ω·cm were obtained when the ZTO films deposited at 250 oC.展开更多
Removal of X-ray-induced carbon contamination on beamline optics was studied using radio-frequency plasma with an argon/hydrogen(Ar/H_2) mixture. Experiments demonstrated that the carbon removal rate with Ar/H_2 plasm...Removal of X-ray-induced carbon contamination on beamline optics was studied using radio-frequency plasma with an argon/hydrogen(Ar/H_2) mixture. Experiments demonstrated that the carbon removal rate with Ar/H_2 plasma was higher than that with pure hydrogen or argon. The possible mechanism for this enhanced removal was discussed. The key working parameters for Ar/H_2 plasma removal were determined, including the optimal vacuum pressure, gas mixing ratio, and source power. The optimal process was performed on a carbon-coated multilayer, and the reflectivity was recovered.展开更多
The various advantages of extended-source(ES),broken gate(BG),and hetero-gate-dielectric(HGD)technology are blended together for the proposed tunnel field-effect transistor(ESBG TFET)in order to enhance the direct-cur...The various advantages of extended-source(ES),broken gate(BG),and hetero-gate-dielectric(HGD)technology are blended together for the proposed tunnel field-effect transistor(ESBG TFET)in order to enhance the direct-current and analog/radio-frequency performance.The source of the ESBG TFET is extended into channel for the purpose of increasing the point and line tunneling in the device at the tunneling junction,and then,the on-state current for the ESBG TFET increases.The influence of the source region length on the direct-current and radio-frequency performance parameters of the ESBG TFET is analyzed in detail.The results show that the proposed TFET exhibits a high on-state current to off-state current ratio of 1013,large transconductance of 1200μS/μm,high cut-off frequency of 72.8 GHz,and high gain bandwidth product of 14.3 GHz.Apart from these parameters,the ESBG TFET also demonstrates high linearity distortion parameters in terms of the second-and third-order voltage intercept points,the third-order input interception point,and the third-order intermodulation distortion.Therefore,the ESBG TFET greatly promotes the application potential of conventional TFETs.展开更多
A radio-frequency (rf) plasma sheath model in an oblique magnetic field is established and the energy distribution of ions (IED) incident on the rf sheath biased electrodes is numerically investigated. The simulat...A radio-frequency (rf) plasma sheath model in an oblique magnetic field is established and the energy distribution of ions (IED) incident on the rf sheath biased electrodes is numerically investigated. The simulation results reveal that the external magnetic field can have a decisive impact on the ion flux and energy distribution of the sheath. The ion energy can be transferred between the perpendicular and parallel components under the action of a magnetic field.展开更多
A tunnel field-effect transistor(TFET) is proposed by combining various advantages together, such as non-uniform gate-oxide layer, hetero-gate-dielectric(HGD), and dual-material control-gate(DMCG) technology. The effe...A tunnel field-effect transistor(TFET) is proposed by combining various advantages together, such as non-uniform gate-oxide layer, hetero-gate-dielectric(HGD), and dual-material control-gate(DMCG) technology. The effects of the length of non-uniform gate-oxide layer and dual-material control-gate on the on-state, off-state, and ambipolar currents are investigated. In addition, radio-frequency performance is studied in terms of gain bandwidth product, cut-off frequency,transit time, and transconductance frequency product. Moreover, the length of non-uniform gate-oxide layer and dualmaterial control-gate are optimized to improve the on-off current ratio and radio-frequency performances as well as the suppression of ambipolar current. All results demonstrate that the proposed device not only suppresses ambipolar current but also improves radio-frequency performance compared with the conventional DMCG TFET, which makes the proposed device a better application prospect in the advanced integrated circuits.展开更多
文摘The self-excited second harmonic in radio-frequency capacitively coupled plasma was significantly enhanced by adjusting the external variable capacitor.At a lower pressure of 3 Pa,the excitation of the second harmonic caused an abnormal transition of the electron energy probability function,resulting in abrupt changes in the electron density and temperature.Such changes in the electron energy probability function as well as the electron density and temperature were not observed at the higher pressure of 16 Pa under similar harmonic changes.The phenomena are related to the influence of the second harmonic on stochastic heating,which is determined by both amplitude and the relative phase of the harmonics.The results suggest that the self-excited high-order harmonics must be considered in practical applications of lowpressure radio-frequency capacitively coupled plasmas.
基金Project supported by the National Nature Science Foundation of China (Grant No. 30900332)Grant of General Administration of Quality Supervision Inspection and Quarantine of China (Grant No. 201210079)+1 种基金the Program for Science and Technology Department of Zhejiang Province, China (Grant Nos. 2010C14010 and 2010C33172)the Natural Science Foundation of Zhejiang Province, China (Grant No. Y2090966)
文摘In this paper, an approach to the design of shielded radio-frequency (RF) phased-array coils for magnetic resonance imaging (MRI) is proposed. The target field method is used to find current densities distributed on primary and shield coils. The stream function technique is used to discretize current densities and to obtain the winding patterns of the coils. The corresponding highly ill-conditioned integral equation is solved by the Tikhonov regularization with a penalty function related to the minimum curvature. To balance the simplicity and smoothness with the homogeneity of the magnetic field of the coll's winding pattern, the selection of a penalty factor is discussed in detail.
基金supported by National Natural Science Foundation of China under Grant No. 11702123
文摘Since the high efficiency discharge is critical to the radio-frequency ion thruster(RIT), a 2D axial symmetry hybrid model has been developed to study the plasma evolution of RIT. The fluid method and the drift energy correction of the electron energy distribution function(EEDF) are applied to the analysis of the RIT discharge. In the meantime, the PIC-MCC method is used to investigate the ion beam current extraction character for the plasma plume region. The beam current simulation results, with the hybrid model, agree well with the experimental results, and the error is lower than 11%, which shows the validity of the model. The further study shows there is an optimal ratio for the radio-frequency(RF) power and the beam current extraction power under the fixed RIT configuration. And the beam extraction efficiency will decrease when the discharge efficiency beyond a certain threshold(about 87 W). As the input parameters of the hybrid model are all the design values, it can be directly used to the optimum design for other kinds of RITs and radio-frequency ion sources.
基金supported by National Natural Science Foundation of China (No. 11505089)
文摘In this paper, a 1D fluid model is developed to study the characteristics of a discharge in argon with small admixtures of oxygen at atmospheric pressure. This model consists of a series of equations, including continuity equations for electrons, positive ions, negative ions and neutral particles, the energy equation, and the Poisson equation for electric potential. Special attention has been paid to the electron energy dissipation and the mechanisms of electron heating, while the admixture of oxygen is in the range of 0.1%-0.6%. It is found that when the oxygen-to-argon ratio grows, the discharge is obviously divided into three stages: electron growth, electron reduction and the electron remaining unchanged. Furthermore, the cycle-averaged electric field, electron temperature, electron Ohmic heating, electron collisionless heating, electron energy dissipation and the net electron production are also studied in detail, and when the oxygen-to- argon ratio is relatively larger (R = 0.6%), double value peaks of electron Ohmic heating appear in the sheath. According to the results of the numerical simulation, various oxygen-to-argon ratios result in different amounts of electron energy dissipation and electron heating.
文摘Objective: To evaluate the hemodynamic changes of hepatic artery (HA), portal vein (PV) and tumors in hepatic cancer patients treated by cluster electrode radio-frequency ablation with the aid of color Doppler flow imaging (CDFI). Methods: The hemodynamic changes of HA, PV and 42 tumors in 30 cases of hepatic cancer were investi- gated by CDFI one week before and after cluster e- lectrode radio-frequency ablation. Results: One week after radio-frequency ablation, the velocity of HA decreased (P<0.05), but the dia- meter and velocity of PV unchanged. Before radio- frequency ablation, blood signals were observed in 35 cancer nodes (83.0 % of all 42 nodes). After radio- frequency ablation, blood signals were reduced in 15 nodes and disappeared in 14 nodes. Early investiga- tion implied that the decrease of blood supply was parallel with the reduction of node size. However, the outcome in case of huge nodes with double blood supply was not as promising as those small nodes. Conclusion: CDFI is useful to assess blood supply in ablation of hepatic cancer by using cluster electrode radio-frequency therapy.
基金supported by the National Key Research and Development Program of China(No.2016YFD0102106)National Natural Science Foundation of China(Nos.11475103,21627812)。
文摘Cold atmospheric plasmas(CAPs)have shown great applicability in agriculture.Many kinds of CAP sources have been studied in agricultural applications to promote plant growth and cure plant diseases.We briefly review the state-of-the-art stimulating effects of atmospheric-pressure dielectricbarrier-discharge(AP-DBD)plasmas,after the direct or indirect treatment of plants for growth promotion and disease control.We then discuss the special demands on the characteristics of the CAP sources for their applications in plant mutation breeding.An atmospheric and room temperature plasma(ARTP)jet generator with a large plasma irradiation area,a high enough concentration of chemically reactive species and a low gas temperature is designed for direct plant mutagenesis.Experimental measurements of the electrical,thermal and optical features of the ARTP generator are conducted.Then,an ARTP-P(ARTP for plant mutagenesis)mutation breeding machine is developed,and a typical case of plant mutation breeding by the ARTP-P mutation machine is presented using Coreopsis tinctoria Nutt.seeds.Physical and agricultural experiments show that the newly-developed ARTP-P mutation breeding machine with a large irradiation area can generate uniform CAP jets with high concentrations of chemically reactive species and mild gas temperatures,and have signiflcant mutagenesis effects on the Coreopsis tinctoria Nutt.seeds.The ARTP-P mutation breeding machine may provide a platform for systematic studies on mutation mechanisms and results for various plant seeds under different operating conditions in future research.
基金Supported by the National Key Program for S&T Research and Development under Grant No 2016YFA0400400the National Natural Science Foundation of China under Grant No 11575012
文摘A high intrinsic quality factor (Q0) of a superconducting radio-frequency cavity is beneficial to reducing the oper- ation costs of superconducting accelerators. Nitrogen doping (N-doping) has been demonstrated as a aseful way to improve Q0 of the superconducting cavity in recent years. N-doping researches with 1.3 GHz single cell cavities are carried out at Peking University and the preliminary results are promising. Our recipe is slightly different from other laboratories. After 250μm polishing, high pressure rinsing and 3 h high temperature annealing, the cavities are nitrogen doped at 2.7-4.0Pa for 20rain and then followed by 15μm electropolishing. Vertical test results show that Q0 of a 1.3 GHz single cell cavity made of large grain niobium has increased to 4 ×10 10 at 2.0K and medium gradient.
文摘Indium tin oxide(ITO)thin films(100±10nm)were deposited on PC(polycarbonate)and glass substrates by rf(radio-frequency)mannetron spuutering.The oxygen content of the ITO films was changed by variation of the sputtering gas composition.All the other deposition parameters were kept constant.The sheet resistance.optical transmittance and microstructure of ITO films were investigated using a four-point probe.spectrophotometer,X-ray diffractometer(XRD)and atomic force microscope(AFM).Sheet resistances for the ITO films with optical transmittance more than 75% on PC substrates varied from 40Ω/cm^2 to more than 104 Ω/cm^2 with increasing oxygen partial pressure from O to about 2%.The same tendeney of sheet resistances increasing with increasing oxygen partial pressure was observed on glass substrates.The X-ray diffraction data indicated polycrystalline filns with grain orientations predominantly along(440)and (422)directions.The intensities of (440)and (422)peaks increased slightly with the increase of oxygen partial pressure both on PC and glass substrates.The AFM images show that the ITO films on PC substrates were dense and uniform.The average grain size of the films was about 40nm.
基金Project supported by the National Natural Science Foundation of China(Grant Nos 50528707 and 50537020).
文摘The existence of two diffe1:ent discharge modes has been verified in an rf (radio-frequency) atmospheric pressure glow discharge (APGD) by Shi [J. Appl. Phys. 97, 023306 (2005)]. In the first mode, referred to as a mode, the discharge current density is relatively low and the bulk plasma electrons acquire the energy due to the sheath expansion. In the second mode, termed γ mode, the discharge current density is relatively high, the secondary electrons emitted by cathodc under ion bombardment in the cathode sheath region play an important role in sustaining the discharge. In this paper, a one-dimensional self-consistent fluid model for rf APGDs is used to simulate the discharge mechanisms in the mode in helium discharge between two parallel metallic planar electrodes. The results show that as the applied voltage increases, the discharge current becomes greater and the plasma density correspondingly increases, consequentially the discharge transits from the a mode into the γ mode. The high collisionality of the APGD plasma results in significant drop of discharge potential across the sheath region, and the electron Joule heating and the electron collisional energy loss reach their maxima in the region. The validity of the simulation is checked with the available experimental and numerical data.
基金supported by the National Key R&D Program of China(No.2017YFE0300106)National Natural Science Foundation of China(No.12075049)the Fundamental Research Funds for the Central Universities(Nos.DUT20LAB201 and DUT21LAB110)。
文摘In the design of negative hydrogen ion sources,a magnetic filter field of tens of Gauss at the expansion region is essential to reduce the electron temperature,which usually results in a magnetic field of around 10 Gauss in the driver region,destabilizing the discharge.The magnetic shield technique is proposed in this work to reduce the magnetic field in the driver region and improve the discharge characteristics.In this paper,a three-dimensional fluid model is developed within COMSOL to study the influence of the magnetic shield on the generation and transport of plasmas in the negative hydrogen ion source.It is found that when the magnetic shield material is applied at the interface of the expansion region and the driver region,the electron density can be effectively increased.For instance,the maximum of the electron density is 6.7×10^(17)m^(-3)in the case without the magnetic shield,and the value increases to 9.4×10^(17)m^(-3)when the magnetic shield is introduced.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61475090,61675123,61775124,and 11804202)+1 种基金the State Key Program of National Natural Science of China(Grant Nos.11434007 and61835007)the Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(Grant No.IRT13076)
文摘We utilize an electromagnetically induced transparency(EIT) of a three-level cascade system involving Rydberg state in a room-temperature cell, formed with a cesium 6 S_(1/2)–6 P_(3/2)–66 S_(1/2) scheme, to investigate the Autler–Townes(AT)splitting resulting from a 15.21-GHz radio-frequency(RF) field that couples the |66 S_(1/2) → |65 P_(1/2) Rydberg transition.The radio-frequency electric field induced AT splitting, γAT, is defined as the peak-to-peak distance of an EIT-AT spectrum.The dependence of AT splitting γAT on the probe and coupling Rabi frequency, ?_p and ?_c, is investigated. It is found that the EIT-AT splitting strongly depends on the EIT linewidth that is related to the probe and coupling Rabi frequency in a weak RF-field regime. Using a narrow linewidth EIT spectrum would decrease the uncertainty of the RF field measurements.This work provides new experimental evidence for the theoretical framework in [J. Appl. Phys. 121, 233106(2017)].
文摘Objective To investigate and compare the effect of radio-frequency (RF) field exposure on expression of heat shock proteins (Hsps) in three human glioma cell lines (MO54, A172, and T98). Methods Cells were exposed to sham or 1950 MHz continuous-wave for 1 h. Specific absorption rates (SARs) were 1 and 10 W/kg. Localization and expression of Hsp27 and phosphorylated Hsp27 ((78) Ser) (p-Hsp27) were examined by immunocytochemistry. Expression levels of Hsp27, p-Hs27, and Hsp70 were determined by Western blotting. Results The Hsp27 was primarily located within the cytoplasm, p-Hsp27 in both cytoplasm and nuclei of MO54, A172, and T98 cells. RF field exposure did not affect the distribution or expression of Hsp27. In addition, Western blotting showed no significant differences in protein expression of Hsp27 or HspT0 between sham- and RF field-exposed cells at a SAR of 1 W/kg and 10 W/kg for 1 h in three cells lines. Exposure to RF field at a SAR of 10 W/kg for 1 h slightly decreased the protein level of phosphorylated Hsp27 in MO54 cells. Conclusion The 1950 MHz RF field has only little or no apparent effect on Hsp70 and Hsp27 expression in MO54, A172, and T98 cells.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11174142 and 11304160he National Basic Research Program of China under Grant No 2012CB921504the Special Fund for Public Interest of China under Grant No201510068
文摘La-doped and undoped xBiIn03-(1 - x)PbTi03 (BI-PT) thin films are deposited on (101)SrRuO3/(lOO)Pt/(lO0) MgO substrates by the rf-magnetron sputtering method. The structures of the films are characterized by XRD and SEM, and the results indicate that the thin films are grown with mainly (100) oriented and columnar structures. The ferroelectricity and piezoelectricity of the BI-PT films are also measured, and the measured results illustrate that both performances are effectively improved by the La-doping with suitable concentrations. These results will open up wide potential applications of the films in electronic devices.
文摘The present work explores the application of La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(LSCNO)perovskite as electrode material for the symmetric solid oxide fuel cell.Symmetric solid oxide fuel cells of thin-film LSCNO electrodes were prepared to study the oxygen reduction reaction at intermediate temperature.The Rietveld refinement of syn-thesized material shows a hexagonal structure with the R-3c space group of the prepared perovskite material.Lattice parameter and fractional coordinates were utilized to calculate the oxygen ion diffusion coefficient for molecular dynamic simulation.At 973 K,the oxygen ion diffusion of LSCNO was 1.407×10^(-8)cm^(2)s^(-1) higher by order of one magnitude than that of the La_(0.5)Sr_(0.5)Co_(0.95)Nb_(0.05)O_(3-δ)(7.751×10^(-9)cm^(2)^(-1)).The results suggest that the Nb doping provide the structural stability which improves oxygen anion diffusion.The enhanced structural stability was analysed by the thermal expansion coefficient calculated experimentally and from molecular dynamics simulations.Furthermore,the density functional theory calculation revealed the role of Nb dopant for oxygen vacancy formation energy at Sr-0 and La-O planes is lower than the undoped structure.To understand the rate-limiting process for sluggish oxygen diffusion kinetics,80 nm and 40 nm thin films were fabricated using radio frequency magnetron sputtering on gadolinium doped ceria electrolyte substrate.The impedance was observed to increase with an increasing thickness,suggesting the bulk diffusion as a rate-limiting step for oxygen ion diffu-sion.The electrochemical performance was analysed for the thin-flm symmetric solid oxide fuel cell,which achieved a peak power density of 390 mW cm^(-2) at 1.02 V in the presence of H_(2) fuel on the anode side and air on the cathode side.
基金Funded by the Program for Changjiang Scholars and Innovative Research Team in University, Ministry of Education, China (No.IRT0547)
文摘High transparent and conductive thin films of zinc doped tin oxide (ZTO) were deposited on quartz substrates by the radio-frequency (RF) magnetron sputtering using a 12 wt% ZnO doped with 88 wt% SnO2 ceramic target.The effect of substrate temperature on the structural,electrical and optical performances of ZTO films has been studied.X-ray diffraction (XRD) results show that ZTO films possess tetragonal rutile structure with the preferred orientation of (101).The surface morphology and roughness of the films was investigated by the atomic force microscope (AFM).The electrical characteristic (including carrier concentration,Hall mobility and resistivity) and optical transmittance were studied by the Hall tester and UV- VIS,respectively.The highest carrier concentration of -1.144×1020 cm-3 and the Hall mobility of 7.018 cm2(V ·sec)-1 for the film with an average transmittance of about 80.0% in the visible region and the lowest resistivity of 1.116×10-2 Ω·cm were obtained when the ZTO films deposited at 250 oC.
基金supported by the National Nature Science Foundation of China(No.61404139)the National Science and Technology Major Project(No.2012ZX0270 2001-005)the State Key Laboratory of Applied Optics
文摘Removal of X-ray-induced carbon contamination on beamline optics was studied using radio-frequency plasma with an argon/hydrogen(Ar/H_2) mixture. Experiments demonstrated that the carbon removal rate with Ar/H_2 plasma was higher than that with pure hydrogen or argon. The possible mechanism for this enhanced removal was discussed. The key working parameters for Ar/H_2 plasma removal were determined, including the optimal vacuum pressure, gas mixing ratio, and source power. The optimal process was performed on a carbon-coated multilayer, and the reflectivity was recovered.
基金the University Natural Science Research Key Project of Anhui Province(Grant No.KJ2020A0075)Excellent Talents Supported Project of Colleges and Universities(Grant No.gxyq2018048)。
文摘The various advantages of extended-source(ES),broken gate(BG),and hetero-gate-dielectric(HGD)technology are blended together for the proposed tunnel field-effect transistor(ESBG TFET)in order to enhance the direct-current and analog/radio-frequency performance.The source of the ESBG TFET is extended into channel for the purpose of increasing the point and line tunneling in the device at the tunneling junction,and then,the on-state current for the ESBG TFET increases.The influence of the source region length on the direct-current and radio-frequency performance parameters of the ESBG TFET is analyzed in detail.The results show that the proposed TFET exhibits a high on-state current to off-state current ratio of 1013,large transconductance of 1200μS/μm,high cut-off frequency of 72.8 GHz,and high gain bandwidth product of 14.3 GHz.Apart from these parameters,the ESBG TFET also demonstrates high linearity distortion parameters in terms of the second-and third-order voltage intercept points,the third-order input interception point,and the third-order intermodulation distortion.Therefore,the ESBG TFET greatly promotes the application potential of conventional TFETs.
基金supported by National Natural Science Foundation of China (No. 10605008)
文摘A radio-frequency (rf) plasma sheath model in an oblique magnetic field is established and the energy distribution of ions (IED) incident on the rf sheath biased electrodes is numerically investigated. The simulation results reveal that the external magnetic field can have a decisive impact on the ion flux and energy distribution of the sheath. The ion energy can be transferred between the perpendicular and parallel components under the action of a magnetic field.
基金Project supported by the University Natural Science Research Key Project of Anhui Province,China(Grant No.KJ2017A502)the Introduced Talent Project of Anhui Science and Technology University,China(Grant No.DQYJ201603)+1 种基金the Excellent Talents Supporting Project of Colleges and Universities,China(Grant No.gxyq2018048)the Innovation and Entrepreneurship Training Program for College Students,China(Grant No.2018S10879052)
文摘A tunnel field-effect transistor(TFET) is proposed by combining various advantages together, such as non-uniform gate-oxide layer, hetero-gate-dielectric(HGD), and dual-material control-gate(DMCG) technology. The effects of the length of non-uniform gate-oxide layer and dual-material control-gate on the on-state, off-state, and ambipolar currents are investigated. In addition, radio-frequency performance is studied in terms of gain bandwidth product, cut-off frequency,transit time, and transconductance frequency product. Moreover, the length of non-uniform gate-oxide layer and dualmaterial control-gate are optimized to improve the on-off current ratio and radio-frequency performances as well as the suppression of ambipolar current. All results demonstrate that the proposed device not only suppresses ambipolar current but also improves radio-frequency performance compared with the conventional DMCG TFET, which makes the proposed device a better application prospect in the advanced integrated circuits.