A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,th...A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,the formation water and rock components in the Tahe Oilfield,the long-term thermal stability,salt tolerance and the ability to change the wettability,interfacial activity and oil washing efficiency of the mixed surfactant system were studied.The system contains the anionic surfactant SDB and another cationic surfactant SDY.When the total mass concentration of the SS solution is 0.15 wt%,m(SDB)/m(SDY)ratio is 1 to 1,and excellent efficiencies are achieved for oil washing for five kinds of Tahe Oilfield crude oils(more than 60%).In addition,after adding cationic surfactant,the adsorption capacity of the surfactant is further reduced,reaching 0.261 mg/g.The oil displacement experiments indicate that under a temperature of 150°C and a salinity of 24.6×104 mg/L,the SS system enhances the oil recovery by over 10%after water flooding.The SS anionic–cationic surfactant system is first presented in the open literature that can be successfully applied to obtain predictions of Tahe Oilfield carbonate reservoirs with a high temperature and high salinity.展开更多
In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oil...In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir.展开更多
The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal ...The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase(SOD) and photosynthesis were significantly increased, while malonaldehyde(MDA) and H_2O_2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid(JA) contents and SOD activity were significantly higher, while H_2O_2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.展开更多
Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dis...Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dispersions were systematically studied at different concentrations,temperatures and inorganic salts.At high temperature(75C)and high salinity(10,000 mg,L1 NaCl),AANPs increase the apparent viscosity and dynamic modulus of the XG solution,and XG/AANP hybrid dispersion exhibits elastic-dominant properties.The most effective concentrations of XG and AANP interacting with each other are 1750 mg·L^(-1) and 0.74 wt%,respectively.The temperature tolerance of XG solution is not satisfactory,and high temperature further weakens the salt tolerance of XG.However,the AANPs significantly enhance the viscoelasticity the XG solution through hydrogen bonds and hydrophobic effect.Under reservoir conditions,XG/AANP hybrid recovers approximately 18.5%more OOIP(original oil in place)than AANP and 11.3%more OOIP than XG.The enhanced oil recovery mechanism of the XG/AANP hybrid is mainly increasing the sweep coefficient,the contribution from the reduction of oil-water interfacial tension is less.展开更多
Combined with the current research status in this area at home and abroad, with the improvement of salt and high temperature resistance as the research goal, the laboratory research of salt and high temperature resist...Combined with the current research status in this area at home and abroad, with the improvement of salt and high temperature resistance as the research goal, the laboratory research of salt and high temperature resistant drilling fluid system has been carried out, and lubricants, inhibitors and stabilizers have been optimized. The final drilling fluid formula is: water + 3% sepiolite + 0.3% Na<sub>2</sub>CO<sub>3</sub> + 3% RH-225 + 3% KCOOH + 3% G-SPH + 3% CQA-10 + 1.5% ZX-1 + Xinjiang barite, density 2.2 g/cm<sup>3</sup>, using hot-rolling furnace, environmental scanning electron microscope, high temperature and high pressure plugging instrument and Zeiss microscopes and other instruments use core immersion experiments, permeability recovery value experiments, and static stratification index methods to perform temperature resistance, reservoir protection, plugging performance, and static settlement stability performance of the configured drilling fluid., Inhibition performance, biological toxicity, salt resistance, anti-pollution performance have been tested, and it is concluded that the temperature resistance is good under the condition of 210°C, and the salt resistance can meet the requirements of 20% NaCl + 0.5% CaCl<sub>2</sub> concentration. It has a good reservoir protection effect, the permeability recovery value can reach more than 90%, the performance of restraining water dispersion and cuttings expansion is good, the heat roll recovery rate can reach more than 85%, and the SSSI value shows that its settlement stability performance is good;Its plugging performance is good under high temperature and high pressure. It laid the foundation for the next step to promote the field application of the drilling fluid system.展开更多
Peanut (Arachis hypogaea L.) is one of the major oilseed crops, mainly grown in tropical and sub-tropical regions of the world. It is also rich in proteins, vitamins and ions, therefore it constitutes an important por...Peanut (Arachis hypogaea L.) is one of the major oilseed crops, mainly grown in tropical and sub-tropical regions of the world. It is also rich in proteins, vitamins and ions, therefore it constitutes an important portion of food nutrition for people in these regions. The production of peanut is being threatened by the changing environments as the major peanut producing counties such as China, India, and USA are facing severe water shortage for peanut irrigation. The yield and quality of peanut are negatively affected by drought and salinity. Making peanut more droughtand salt-tolerant will likely sustain peanut production in countries where water shortage or saline soil are already problems. Efforts were made to genetically engineer peanut for higher tolerance to drought and salt. Analysis of these transgenic peanut plants indicated that the agronomic traits such as peanut yields were the same between wild-type and transgenic peanut plants under normal growth conditions, yet the yields of transgenic peanut plants were much higher than wild-type peanut plant under reduced irrigation conditions. Other traits such as protein content and fatty acid compositions in the seeds of transgenic peanut plants were not altered under both normal and drought conditions, indicating that the genetic manipulation of peanut for stress tolerance did not affect chemical compositions of peanut seeds in transgenic peanut plants, only increased seed yields under stress conditions.展开更多
Trehalose is a non-reducing disaccharide with high stability and strong water absorption properties that can improve the resistance of organisms to various abiotic stresses.Trehalose-6-phosphate synthase(TPS)plays imp...Trehalose is a non-reducing disaccharide with high stability and strong water absorption properties that can improve the resistance of organisms to various abiotic stresses.Trehalose-6-phosphate synthase(TPS)plays important roles in trehalose metabolism and signaling.In this study,the full-length cDNA of ThTPS was cloned from Tamarix hispida Willd.A phylogenetic tree including ThTPS and 11 AtTPS genes from Arabidopsis indicated that the ThTPS protein had a close evolutionary relationship with AtTPS7.However,the function of At TPS7 has not been determined.To analyze the abiotic stress tolerance function of ThTPS,the expression of ThTPS in T.hispida under salt and drought stress and JA,ABA and GA3 hormone stimulation was monitored by qRT-PCR.The results show that ThTPS expression was clearly induced by all five of these treatments at one or more times,and salt stress caused particularly strong induction of Th TPS in the roots of T.hispida.The ThTPS gene was transiently overexpressed in T.hispida.Both physiological indexes and staining results showed that ThTPS gene overexpression increased salt and osmotic stress tolerance in T.hispida.Overall,the Th TPS gene can respond to abiotic stresses such as salt and drought,and its overexpression can significantly improve salt and osmotic tolerance.These findings establish a foundation to better understand the responses of TPS genes to abiotic stress in plants.展开更多
With four poplar clones, namely 84-323 (Populus deltoides cv. ?4-323?, 84-324 (Populus deltoides cv. ?4-324?, 79-35 (Populus ?euramericana cv. ?9-35?, and I-69 (Populus deltoides cv. 慙ux?I-69/55) as a control, resear...With four poplar clones, namely 84-323 (Populus deltoides cv. ?4-323?, 84-324 (Populus deltoides cv. ?4-324?, 79-35 (Populus ?euramericana cv. ?9-35?, and I-69 (Populus deltoides cv. 慙ux?I-69/55) as a control, researches on cold, drought and salt resistance of the clones were conducted. Electrolyte permeability under a series of low temperatures, relative water loss rate of detached leaves with time series and survival rate and growth performance in salt soil were measured. The results showed that 84-323, 84-324 and 79-35 were resistant to cold as same as I-69 (CK) and more resistant to drought and salinity than I-69 (CK).展开更多
Cryptogein (Crypt), an elicitin secreted from Phytophthora cryptogea, was used for genetic engineering of biotic and abiotic resistance plants. We generated trans-genic tobacco plants harboring a rice phenylalanine am...Cryptogein (Crypt), an elicitin secreted from Phytophthora cryptogea, was used for genetic engineering of biotic and abiotic resistance plants. We generated trans-genic tobacco plants harboring a rice phenylalanine ammo-nia-lyase (PAL) promoter and Crypt fusion gene (PAL::Crypt) or the mutated Crypt (mutation of the lysine at the position 13 to valine) under the control CaMV35S promoter (CaMV35S::CryK13V). T2 progeny of the transgenic plants showed significantly enhanced disease resistance to patho-gens of fungal Phytophthora parasitica var nicotiana (Ppn) and Alternaria alternata, and bacterial Pseudomonas syringae pv tabaci. The amount of mRNA accumulation of Crypt and CryK13V was quite low in the transgenic lines analyzed by Northern blot, and was detected by a reverse transcription PCR method. Plants harboring PAL::Crypt construct showed faster and stronger induction of PR-1a gene after Ppn inoculation than that in the wild-type plants. The re-sults suggested that the inducible PAL promoter could rap-idly respond to pathogen attack and efficiently suppress the pathogen infection. Furthermore, the enhanced tolerance to salt stress in both of the Crypt and CryK13V expressing tobacco plants was also observed compared with that in the control plants. The constitutive expression of PR and tran-scription factor genes in the transformants was probably associated with the salt tolerance. The above observations suggested that a cross-talk between biotic and abiotic stresses existed in tobacco plants.展开更多
Ablotlc stress, such as salt, drought and extreme temperature, can result in enhanced production of reactive oxygen species (ROS). Plants have developed both enzymatic ROS-scavenging and non-enzymatic ROS-scavenging...Ablotlc stress, such as salt, drought and extreme temperature, can result in enhanced production of reactive oxygen species (ROS). Plants have developed both enzymatic ROS-scavenging and non-enzymatic ROS-scavenging systems. The major ROS-scavenging enzymes of plants include superoxide dismutase (SOD), ascorbate peroxldaae (APX), catalaae (CAT), glutathione peroxldaae (GPX) and peroxiredoxina (Prxa). In the present work, we identified a gene encoding chloroplast-located peroxiredoxin Q, SsPrxQ, from Suaeda salsa L. located at chloroplast. Overexpression of SsPrxQ In Arabidopsis leads to an increase In salt and low-temperature tolerance.展开更多
基金The support from the China National High Technology Research and Development Program(No.2013AA064301)the National Natural Science Foundation of China(51274210)the Research Start-up Fund of Karamay Campus of China University of Petroleum-Beijing(XQZX20200013)is greatly appreciated.
文摘A new temperature-resistant and salt-tolerant mixed surfactant system(referred to as the SS system)for enhancing oil recovery at the Tahe Oilfield(Xinjiang,China)was evaluated.Based on the analysis of the crude oil,the formation water and rock components in the Tahe Oilfield,the long-term thermal stability,salt tolerance and the ability to change the wettability,interfacial activity and oil washing efficiency of the mixed surfactant system were studied.The system contains the anionic surfactant SDB and another cationic surfactant SDY.When the total mass concentration of the SS solution is 0.15 wt%,m(SDB)/m(SDY)ratio is 1 to 1,and excellent efficiencies are achieved for oil washing for five kinds of Tahe Oilfield crude oils(more than 60%).In addition,after adding cationic surfactant,the adsorption capacity of the surfactant is further reduced,reaching 0.261 mg/g.The oil displacement experiments indicate that under a temperature of 150°C and a salinity of 24.6×104 mg/L,the SS system enhances the oil recovery by over 10%after water flooding.The SS anionic–cationic surfactant system is first presented in the open literature that can be successfully applied to obtain predictions of Tahe Oilfield carbonate reservoirs with a high temperature and high salinity.
基金the China National High Technology Research and Development Program (No. 2013AA064301)National Natural Science Foundation of China (No. 51274210) for financial support
文摘In order to improve the enhanced oil recovery of high-temperature and high-salt oilfields, a novel temperature-resistant and salt-tolerant surfactant (denoted as SDB-7) was synthesized and evaluated for the Tahe Oilfield (Xinjiang, China), which is representative of high-temperature and high-salt oilfields. It has a central reservoir temperature of 140 ℃ and salinity of 22.6× 10^4 mg/L. The temperature-resistant and salt-tolerant performance, interfacial activity, oil displacement efficiency, aging properties, and adsorption properties of the synthesized surfactant were evaluated for Tahe Oilfield flooding. The results showed that the SDB-7 was temperature-resistant and salt-tolerant capacity of 140 ℃ and 22.6×10^4 rag/ L, respectively, oil displacement efficiency under static condition of 84%, and adsorption loss of 0.4 mg/ g (less than 1 mg/g-oil sand). In the heat aging experiment (under the temperature of 140 ℃ for 60 days), the oil-water interracial tension and oil displacement efficiency of SDB-7 were almost unchanged. The oil displacement experiments showed that, under the temperature of 140 ℃ and the salinity of 22.6× 10^4 mg/L, the surfactant SDB-7 can enhance oil recovery by 14.5% after water flooding,suggesting that SDB-7 has a promising application in high temperature and high salinity (HT/HS) reservoir.
基金supported by the National Natural Science Foundation of China(31371680)the Beijing Food Crops Innovation Consortium Program,China(BAIC092016)the earmarked fund for the China Agriculture Research System(CARS-11)
文摘The variant LM1 was previously obtained using embryogenic cell suspension cultures of sweetpotato variety Lizixiang by gamma-ray induced mutation, and then its characteristics were stably inherited through six clonal generations, thus this mutant was named LM1. In this study, systematic characterization of salt tolerance and Fusarium wilt resistance were performed between Lizixiang and mutant LM1. LM1 exhibited significantly higher salt tolerance compared to Lizixiang. The content of proline and activities of superoxide dismutase(SOD) and photosynthesis were significantly increased, while malonaldehyde(MDA) and H_2O_2 contents were significantly decreased compared to that of Lizixiang under salt stress. The inoculation test with Fusarium wilt showed that its Fusarium wilt resistance was also improved. The lignin, total phenolic, jasmonic acid(JA) contents and SOD activity were significantly higher, while H_2O_2 content was significantly lower in LM1 than that in Lizixiang. The expression level of salt stress-responsive and disease resistance-related genes was significantly higher in LM1 than that in Lizixiang under salt and Fusarium wilt stresses, respectively. This result provides a novel and valuable material for improving the salt tolerance and Fusarium wilt resistance of sweetpotato.
基金We gratefully acknowledge financial supports from the Major Program of National Natural Science Foundation of China(Grant No.42090024)the National Natural Science Foundation of China(Grant No.52004322)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QE108).
文摘Amide-and alkyl-modified nanosilicas(AANPs)were synthesized and introduced into Xanthan gum(XG)solution,aiming to improve the temperature/salt tolerance and oil recovery.The rheological behaviors of XG/AANP hybrid dispersions were systematically studied at different concentrations,temperatures and inorganic salts.At high temperature(75C)and high salinity(10,000 mg,L1 NaCl),AANPs increase the apparent viscosity and dynamic modulus of the XG solution,and XG/AANP hybrid dispersion exhibits elastic-dominant properties.The most effective concentrations of XG and AANP interacting with each other are 1750 mg·L^(-1) and 0.74 wt%,respectively.The temperature tolerance of XG solution is not satisfactory,and high temperature further weakens the salt tolerance of XG.However,the AANPs significantly enhance the viscoelasticity the XG solution through hydrogen bonds and hydrophobic effect.Under reservoir conditions,XG/AANP hybrid recovers approximately 18.5%more OOIP(original oil in place)than AANP and 11.3%more OOIP than XG.The enhanced oil recovery mechanism of the XG/AANP hybrid is mainly increasing the sweep coefficient,the contribution from the reduction of oil-water interfacial tension is less.
文摘Combined with the current research status in this area at home and abroad, with the improvement of salt and high temperature resistance as the research goal, the laboratory research of salt and high temperature resistant drilling fluid system has been carried out, and lubricants, inhibitors and stabilizers have been optimized. The final drilling fluid formula is: water + 3% sepiolite + 0.3% Na<sub>2</sub>CO<sub>3</sub> + 3% RH-225 + 3% KCOOH + 3% G-SPH + 3% CQA-10 + 1.5% ZX-1 + Xinjiang barite, density 2.2 g/cm<sup>3</sup>, using hot-rolling furnace, environmental scanning electron microscope, high temperature and high pressure plugging instrument and Zeiss microscopes and other instruments use core immersion experiments, permeability recovery value experiments, and static stratification index methods to perform temperature resistance, reservoir protection, plugging performance, and static settlement stability performance of the configured drilling fluid., Inhibition performance, biological toxicity, salt resistance, anti-pollution performance have been tested, and it is concluded that the temperature resistance is good under the condition of 210°C, and the salt resistance can meet the requirements of 20% NaCl + 0.5% CaCl<sub>2</sub> concentration. It has a good reservoir protection effect, the permeability recovery value can reach more than 90%, the performance of restraining water dispersion and cuttings expansion is good, the heat roll recovery rate can reach more than 85%, and the SSSI value shows that its settlement stability performance is good;Its plugging performance is good under high temperature and high pressure. It laid the foundation for the next step to promote the field application of the drilling fluid system.
文摘Peanut (Arachis hypogaea L.) is one of the major oilseed crops, mainly grown in tropical and sub-tropical regions of the world. It is also rich in proteins, vitamins and ions, therefore it constitutes an important portion of food nutrition for people in these regions. The production of peanut is being threatened by the changing environments as the major peanut producing counties such as China, India, and USA are facing severe water shortage for peanut irrigation. The yield and quality of peanut are negatively affected by drought and salinity. Making peanut more droughtand salt-tolerant will likely sustain peanut production in countries where water shortage or saline soil are already problems. Efforts were made to genetically engineer peanut for higher tolerance to drought and salt. Analysis of these transgenic peanut plants indicated that the agronomic traits such as peanut yields were the same between wild-type and transgenic peanut plants under normal growth conditions, yet the yields of transgenic peanut plants were much higher than wild-type peanut plant under reduced irrigation conditions. Other traits such as protein content and fatty acid compositions in the seeds of transgenic peanut plants were not altered under both normal and drought conditions, indicating that the genetic manipulation of peanut for stress tolerance did not affect chemical compositions of peanut seeds in transgenic peanut plants, only increased seed yields under stress conditions.
基金supported by the Province in Heilongjiang Outstanding Youth Science Fund(JC2017004)the National Natural Science Foundation of China(No.31370676)Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team)。
文摘Trehalose is a non-reducing disaccharide with high stability and strong water absorption properties that can improve the resistance of organisms to various abiotic stresses.Trehalose-6-phosphate synthase(TPS)plays important roles in trehalose metabolism and signaling.In this study,the full-length cDNA of ThTPS was cloned from Tamarix hispida Willd.A phylogenetic tree including ThTPS and 11 AtTPS genes from Arabidopsis indicated that the ThTPS protein had a close evolutionary relationship with AtTPS7.However,the function of At TPS7 has not been determined.To analyze the abiotic stress tolerance function of ThTPS,the expression of ThTPS in T.hispida under salt and drought stress and JA,ABA and GA3 hormone stimulation was monitored by qRT-PCR.The results show that ThTPS expression was clearly induced by all five of these treatments at one or more times,and salt stress caused particularly strong induction of Th TPS in the roots of T.hispida.The ThTPS gene was transiently overexpressed in T.hispida.Both physiological indexes and staining results showed that ThTPS gene overexpression increased salt and osmotic stress tolerance in T.hispida.Overall,the Th TPS gene can respond to abiotic stresses such as salt and drought,and its overexpression can significantly improve salt and osmotic tolerance.These findings establish a foundation to better understand the responses of TPS genes to abiotic stress in plants.
文摘With four poplar clones, namely 84-323 (Populus deltoides cv. ?4-323?, 84-324 (Populus deltoides cv. ?4-324?, 79-35 (Populus ?euramericana cv. ?9-35?, and I-69 (Populus deltoides cv. 慙ux?I-69/55) as a control, researches on cold, drought and salt resistance of the clones were conducted. Electrolyte permeability under a series of low temperatures, relative water loss rate of detached leaves with time series and survival rate and growth performance in salt soil were measured. The results showed that 84-323, 84-324 and 79-35 were resistant to cold as same as I-69 (CK) and more resistant to drought and salinity than I-69 (CK).
文摘Cryptogein (Crypt), an elicitin secreted from Phytophthora cryptogea, was used for genetic engineering of biotic and abiotic resistance plants. We generated trans-genic tobacco plants harboring a rice phenylalanine ammo-nia-lyase (PAL) promoter and Crypt fusion gene (PAL::Crypt) or the mutated Crypt (mutation of the lysine at the position 13 to valine) under the control CaMV35S promoter (CaMV35S::CryK13V). T2 progeny of the transgenic plants showed significantly enhanced disease resistance to patho-gens of fungal Phytophthora parasitica var nicotiana (Ppn) and Alternaria alternata, and bacterial Pseudomonas syringae pv tabaci. The amount of mRNA accumulation of Crypt and CryK13V was quite low in the transgenic lines analyzed by Northern blot, and was detected by a reverse transcription PCR method. Plants harboring PAL::Crypt construct showed faster and stronger induction of PR-1a gene after Ppn inoculation than that in the wild-type plants. The re-sults suggested that the inducible PAL promoter could rap-idly respond to pathogen attack and efficiently suppress the pathogen infection. Furthermore, the enhanced tolerance to salt stress in both of the Crypt and CryK13V expressing tobacco plants was also observed compared with that in the control plants. The constitutive expression of PR and tran-scription factor genes in the transformants was probably associated with the salt tolerance. The above observations suggested that a cross-talk between biotic and abiotic stresses existed in tobacco plants.
文摘Ablotlc stress, such as salt, drought and extreme temperature, can result in enhanced production of reactive oxygen species (ROS). Plants have developed both enzymatic ROS-scavenging and non-enzymatic ROS-scavenging systems. The major ROS-scavenging enzymes of plants include superoxide dismutase (SOD), ascorbate peroxldaae (APX), catalaae (CAT), glutathione peroxldaae (GPX) and peroxiredoxina (Prxa). In the present work, we identified a gene encoding chloroplast-located peroxiredoxin Q, SsPrxQ, from Suaeda salsa L. located at chloroplast. Overexpression of SsPrxQ In Arabidopsis leads to an increase In salt and low-temperature tolerance.