期刊文献+
共找到20,203篇文章
< 1 2 250 >
每页显示 20 50 100
Numerical simulation of melt flow and temperature field during DC casting 2024 aluminium alloy under different casting conditions
1
作者 Jin-chuan Wang Yu-bo Zuo +3 位作者 Qing-feng Zhu Jing Li Rui Wang Xu-dong Liu 《China Foundry》 SCIE EI CAS CSCD 2024年第4期387-396,共10页
Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ... Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone. 展开更多
关键词 aluminium DC casting flow field temperature field numerical simulation
下载PDF
Stability analysis of a liquid crystal elastomer self-oscillator under a linear temperature field
2
作者 Haiyang WU Jiangfeng LOU +2 位作者 Biao ZHANG Yuntong DAI Kai LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期337-354,共18页
Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for ... Self-oscillating systems abound in the natural world and offer substantial potential for applications in controllers,micro-motors,medical equipments,and so on.Currently,numerical methods have been widely utilized for obtaining the characteristics of self-oscillation including amplitude and frequency.However,numerical methods are burdened by intricate computations and limited precision,hindering comprehensive investigations into self-oscillating systems.In this paper,the stability of a liquid crystal elastomer fiber self-oscillating system under a linear temperature field is studied,and analytical solutions for the amplitude and frequency are determined.Initially,we establish the governing equations of self-oscillation,elucidate two motion regimes,and reveal the underlying mechanism.Subsequently,we conduct a stability analysis and employ a multi-scale method to obtain the analytical solutions for the amplitude and frequency.The results show agreement between the multi-scale and numerical methods.This research contributes to the examination of diverse self-oscillating systems and advances the theoretical analysis of self-oscillating systems rooted in active materials. 展开更多
关键词 SELF-OSCILLATION stability analysis multi-scale method liquid crystal elastomer linear temperature field
下载PDF
Investigation on Temperature Field Calibration and Analysis of Wind Tunnel
3
作者 Zhaokun Ren Zhanyuan Ma +3 位作者 Yue Zhang Hongda Xu Yunxiang Wang Hui Xu 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第3期63-79,共17页
For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss compo... For wind tunnels,it is essential to conduct temperature and flow field calibration on their test section,which is an important indicator for evaluating the quality of wind tunnel flow fields.In the paper,a truss composed of temperature sensors was used to calibrate the temperature field of a completed wind tunnel section.By adjusting the distance between the temperature measurement truss and the nozzle,as well as the wind speed,the temperature field distribution data at different positions could be obtained.Analyze these data to identify important factors that affect the distribution of temperature field.Simultaneously,the temperature field of the wind tunnel was simulated accordingly.The purpose is to further analyze the fluid heat transfer between air and wind tunnel walls through numerical simulation.Through the above analysis methods,the quality of the temperature field in the wind tunnel has been further verified,providing reference for future wind tunnel tests of relevant models. 展开更多
关键词 wind tunnel temperature field numerical simulation fluid heat transfer
下载PDF
An Explanation of the Temperature-Dependent Upper Critical Field Data of H3S on the Basis of the Thermodynamics of a Superconductor in a Magnetic Field
4
作者 Gulshan Prakash Malik 《World Journal of Condensed Matter Physics》 CAS 2024年第3期45-50,共6页
Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtai... Excellent fits to a couple of the data-sets on the temperature (T)-dependent upper critical field (Hc2) of H3S (critical temperature, Tc ≈ 200 K at pressure ≈ 150 GPa) reported by Mozaffari, et al. (2019) were obtained by Talantsev (2019) in an approach based on an ingenious mix of the Ginzberg-Landau (GL), the Werthamer, Helfand and Hohenberg (WHH), and the Gor’kov, etc., theories which have individually been employed for the same purpose for a long time. Up to the lowest temperature (TL) in each of these data-sets, similarly accurate fits have also been obtained by Malik and Varma (2023) in a radically different approach based on the Bethe-Salpeter equation (BSE) supplemented by the Matsubara and the Landau quantization prescriptions. For T TL, however, while the (GL, WHH, etc.)-based approach leads to Hc2(0) ≈ 100 T, the BSE-based approach leads to about twice this value even at 1 K. In this paper, a fit to one of the said data-sets is obtained for the first time via a thermodynamic approach which, up to TL, is as good as those obtained via the earlier approaches. While this is interesting per se, another significant result of this paper is that for T TL it corroborates the result of the BSE-based approach. 展开更多
关键词 H3S Upper Critical field (Hc2) Variation of Hc2 with temperature Clausius-Clapeyron equation in a magnetic field Behavior of Hc2 for temperatures Close to 0 K
下载PDF
Temperature field calculation of rail flash welding
5
作者 Rui Xu Min Zhang +6 位作者 Zhenkun Gao Guo Zhao Wei Ding Shouming Wang Peng Zhang Xiang Liu Jingjing Li 《High-Speed Railway》 2024年第2期116-121,共6页
The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,t... The forging stage of rail flash welding has a decisive influence on joint strength,and the study of the temperature distribution in the process has an important role in further improving joint strength.In this paper,three calculation methods for the temperature field are given.First,the finite element model of the temperature field before forging rail flash welding is established by using the transient heat module of Ansys software and verified by infrared temperature measurement.Second,the temperature distribution of different parts of the rail before flash welding is obtained by using infrared thermal imaging equipment.Third,Matlab software is used to calculate the temperature of the non-measured part.Finally,the temperature distribution function along the rail axis is fitted through the temperature measurement data.The temperature distribution before the top forging of the rail flash welding can be used to analyze the joint and heat-affected zone organization and properties effectively and to guide the parameter setting and industrial production. 展开更多
关键词 Flash welding temperature field Joint strength Software calculation
下载PDF
Interfacial built-in electric field and crosslinking pathways enabling WS_(2)/Ti_(3)C_(2)T_(x) heterojunction with robust sodium storage at low temperature
6
作者 Jiabao Li Shaocong Tang +6 位作者 Jingjing Hao Quan Yuan Tianyi Wang Likun Pan Jinliang Li Shenbo Yang Chengyin Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期635-645,I0014,共12页
Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also ch... Developing efficient energy storage for sodium-ion batteries(SIBs)by creating high-performance heterojunctions and understanding their interfacial interaction at the atomic/molecular level holds promise but is also challenging.Besides,sluggish reaction kinetics at low temperatures restrict the operation of SIBs in cold climates.Herein,cross-linking nanoarchitectonics of WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,featuring built-in electric field(BIEF),have been developed,employing as a model to reveal the positive effect of heterojunction design and BIEF for modifying the reaction kinetics and electrochemical activity.Particularly,the theoretical analysis manifests the discrepancy in work functions leads to the electronic flow from the electron-rich Ti_(3)C_(2)T_(x) to layered WS_(2),spontaneously forming the BIEF and“ion reservoir”at the heterogeneous interface.Besides,the generation of cross-linking pathways further promotes the transportation of electrons/ions,which guarantees rapid diffusion kinetics and excellent structure coupling.Consequently,superior sodium storage performance is obtained for the WS_(2)/Ti_(3)C_(2)T_(x) heterojunction,with only 0.2%decay per cycle at 5.0 A g^(-1)(25℃)up to 1000 cycles and a high capacity of 293.5 mA h g^(-1)(0.1A g^(-1)after 100 cycles)even at-20℃.Importantly,the spontaneously formed BIEF,accompanied by“ion reservoir”,in heterojunction provides deep understandings of the correlation between structure fabricated and performance obtained. 展开更多
关键词 WS_(2)/Ti_(3)C_(2)T_(x)heterojunction Built-in electric field Ion reservoir Reaction kinetics Sodium storage performance at low temperature
下载PDF
Temperature and stress fields in electron beam welded Ti-15-3 alloy to 304 stainless steel joint with copper interlayer sheet 被引量:9
7
作者 张秉刚 王廷 +2 位作者 段潇辉 陈国庆 冯吉才 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期398-403,共6页
Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding pro... Electron beam welding of Ti-15-3 alloy to 304 stainless steel (STS) using a copper filler metal was carried out. The temperature fields and stress distributions in the Ti/Fe and Ti/Cu/Fe joint during the welding process were numerically simulated and experimentally measured. The results show that the rotated parabola body heat source is fit for the simulation of the electron beam welding. The temperature distribution is asymmetric along the weld center and the temperature in the titanium alloy plate is higher than that in the 304 STS plate. The thermal stress also appears to be in asymmetric distribution. The residual tensile stress mainly exists in the weld at the 304 STS side. The copper filler metal decreases the peak temperature and temperature grade in the joint as well as the residual stress. The longitudinal and lateral residual tensile strengths reduce by 66 MPa and 31 MPa, respectively. From the temperature and residual stress, it is concluded that copper is a good filler metal candidate for the electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel. 展开更多
关键词 Ti-15-3 alloy 304 stainless steel electron beam welding temperature field residual stress
下载PDF
NUMERICAL SIMULATIONS OF TEMPERATURE FIELD IN DIRECT METAL LASER SINTERING PROCESS 被引量:6
8
作者 顾冬冬 沈以赴 +2 位作者 刘满仓 潘琰峰 胥橙庭 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2004年第3期225-233,共9页
A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radia... A mathematical model is developed for simulating the heat transferring behavior in a direct metal laser sintering process. The model considers the thermal phenomena involved in the process, including conduction, radiation, and convection. A formula for the calculation of the heat conductivity of a sintering system containing solid phase, liquid phase, and gas phase is given. Due to the continuous movement of the laser beam, a local coordinate system centered on the laser beam is used to simplify the analytical calculation. Assuming that it is approximately a Gaussian laser beam, the heat conduction equation is resolved based on the assumption of the thermal insulating boundary conditions and the fixed thermal physical parameters. The FORTRAN language is employed to compile the program to simulate the temperature field in the direct copper powder sintering process. It shows a good agreement with the preliminary experimental results.[KH3/4D] 展开更多
关键词 direct metal laser sintering (DMLS) mathematical model temperature field numerical simulation
下载PDF
Analysis of Static Temperature Field of Vehicle's Solid Rubber Tire 被引量:8
9
作者 郑慕侨 崔玉福 孙逢春 《Journal of Beijing Institute of Technology》 EI CAS 1998年第2期135-140,共6页
Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature... Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT. 展开更多
关键词 static temperature field solid rubber tire FE analysis
下载PDF
Measurement and theoretical analysis of solar temperature field in steel-concrete composite girder 被引量:5
10
作者 陈晓强 刘其伟 朱俊 《Journal of Southeast University(English Edition)》 EI CAS 2009年第4期513-517,共5页
The solar temperature field of a large three-span continuous bridge with steel-concrete composite box girder and variable cross-section is measured to verify a calculation method for the temperature field of steel-con... The solar temperature field of a large three-span continuous bridge with steel-concrete composite box girder and variable cross-section is measured to verify a calculation method for the temperature field of steel-concrete composite beams. The test results show that the temperature of an external steel web- plate is higher than that of an internal web-plate due to the difference in solar radiation. Air temperature inside the box matches the average temperature of the whole steel box. Based on actual measurements, a transient thermal analysis with multiple boundary conditions is also carried out by a software program ANSYS. Convective boundary situation and states of solar radiation on steel web plates in different situations are determined in the analysis. The feature of the temperature field is preliminarily achieved through a comparative study between the actual measurement and the finite element analysis. The computed results are in good consistence with the actual measurement results, with the maximum difference within 2 ℃. This indicates that the theoretical calculation method is reliable and it provides a foundation for further research on temperature field distribution in the steel-concrete composite box girder. 展开更多
关键词 steel-concrete composite structure: solar radiation: temperature field EXPERIMENT
下载PDF
THE ANALYSIS OF TEMPERATURE FIELD OFARMORED VEHICLE
11
作者 崔玉福 郑慕侨 《兵工学报》 EI CAS CSCD 北大核心 2000年第1期-,共3页
论述了负重轮轮胎温度场有限元分析方法;给出了生热率数学模型;建立了具有三重非线性的负重轮力学有限元分析模型和热学分析模型,利用有限元分析软件进行了温度场的计算分析;研究了负重轮轮胎温度场,分析了温升过程,为负重轮寿命... 论述了负重轮轮胎温度场有限元分析方法;给出了生热率数学模型;建立了具有三重非线性的负重轮力学有限元分析模型和热学分析模型,利用有限元分析软件进行了温度场的计算分析;研究了负重轮轮胎温度场,分析了温升过程,为负重轮寿命分析提供了理论和数据。 展开更多
关键词 温度场 温升 轮胎 有限元分析 THE ANALYSIS OF temperature field OF
下载PDF
STUDY ON TEMPERATURE FIELD INDUCED IN HIGH FREQUENCY INDUCTION HEATING 被引量:19
12
作者 H. Shen Z.Q. Yao Y.J. Shi J. Hu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第3期190-196,共7页
A mathematical model was established for the temperature field developed during high frequency induction heating (HFIH) by Maxwell's equations. It required solving the coupled equations of the electromagnetic and t... A mathematical model was established for the temperature field developed during high frequency induction heating (HFIH) by Maxwell's equations. It required solving the coupled equations of the electromagnetic and temperature fields. The numerical simudation was performed using FEMLAB. The comparison of the calculations using the proposed model with experimental results showed a very good correlation. The effects of the heating parameters in high frequency induction such as the distance between the plate and the coil, the applied current, the frequency, and the turns of the coil on the temperature profiles developed in the plate were also discussed using the established model. 展开更多
关键词 high frequency induction temperature field numerical simudation
下载PDF
Numerical Simulation of Multi-track and Multi-layer Temperature Field on Laser Direct Metal Shaping 被引量:8
13
作者 LONG Risheng~(1,2) LIU Weijun~1 (1.Advanced Manufacture Lab,Shenyang Institute of Automation,Shenyang 110016,China, 2.Graduate School,Chinese Academy of Sciences,Beijing 100039,China) 《武汉理工大学学报》 CAS CSCD 北大核心 2006年第S3期1111-1116,共6页
To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS proce... To improve the mechanical properties of the parts fabricated by Laser Direct Metal Shaping(LDMS),it is of great significance to understand the distribution regularities of transient temperature field during LDMS process.Based on the“el- ement birth and death”technique of finite element method,a three-dimensional multi-track and multi-layer model for the transient temperature field analysis of LDMS is developed by ANSYS Parametric Design Language(APDL)for the first time.In the fab- ricated modal,X-direction parallel reciprocating scanning paths is introduced.Using the same process parameters,the simulation results show good agreement with the microstructure features of samples which fabricated by LDMS. 展开更多
关键词 LASER DIRECT METAL SHAPING transient temperature field numerical simulation
下载PDF
Numerical Simulation of Temperature Field and Thermal Stress Field of Work Roll During Hot Strip Rolling 被引量:13
14
作者 LI Chang-sheng YU Hai-liang DENG Guan-yu LIU Xiang-hua WANG Guo-dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2007年第5期18-21,共4页
Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll... Based on the thermal conduction equations, the three-dimensional (3D) temperature field of a work roll was investigated using finite element method (FEM). The variations in the surface temperature of the work roll during hot strip rolling were described, and the thermal stress field of the work roll was also analyzed. The results showed that the highest roll surface temperature is 593 ℃, and the difference between the minimum and maximum values of thermal stress of the work roll surface is 145.7 MPa. Furthermore, the results of this analysis indicate that temperature and thermal stress are useful parameters for the investigation of roll thermal fatigue and also for improving the quality of strip during rolling. 展开更多
关键词 hot strip mill ROLL temperature field thermal stress finite element method
下载PDF
COUPLED NUMERICAL SIMULATION ON COLD ROLLER'S TEMPERATURE FIFLD-PHASE TRANSFORMATION - STRESS FIELD DURING ITS QUENCHING PSOCESS 被引量:14
15
作者 J. F. Gu J. S. Pan M. J. Hu and F. F. Shen (School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200030, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2000年第1期254-262,共9页
Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short ti... Complicated changns occur inside the steel parts during quenching process. The abruptly changed boundary conditions make the temperature field,micro - structure and stress field change dramatically in very short time, and these variables take a contact interactions in the whole process. In this paper, a three dimensional non - linear mathematical model for queeching process has been founded and the numerical simulation on temperature field,microstructre and stress field has been realized.In the FEM analysis, the incremental iteration method is used to deal with such complicated nonlinear as boundary nonlinear, physical property nonlinear,transformation nonlinear etc.The effect of stress on transformation kinetics has been considered in the calculation of microstructure. In the stress field anal- ysis,a thermo- elasto - plastic model has been founded, which considers such factors as transforma- tion strain,transformation plastic strain, themal strain and the effect of temperature and transforma- tion on mechanical propertier etc. The transient temperature field, microstructure distribution and stress field of the roller on any time can be displayed vividly,and the cooling curve and the changes of stress on any position can also be given. 展开更多
关键词 quenching phase transformation temperature field stress field finite element method (FEM) numerical simulation
下载PDF
Numerical simulation of the temperature fields of stainless steel with different roller parameters during twin-roll strip casting 被引量:8
16
作者 Yuan Fang Zhen-min Wang +4 位作者 Qing-xiang Yang Yun-kun Zhang Li-gang Liu Hong-yan Hu Yue Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第3期304-308,共5页
The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they ... The temperature field of stainless steel during twin-roll strip casting was simulated by experiment and a finite element (FE) model. By comparing the measured result with the simulated values, it is found that they fit close to each other, which indicates this FE model is effective. Based on this model, the effects of roll gap (t) and roll radius (R) on solidification were simulated. The simulated results give the relationship between t or R and the position of the freezing point. The larger the t is and the smaller the R is, the closer the position of the freezing point is to the exit. 展开更多
关键词 twin-roll strip casting temperature field roll gap roll radius numerical simulation
下载PDF
Research on the temperature field of a partially freezing sand barrier with groundwater seepage 被引量:7
17
作者 Li Yan Lao Zhi Qiang Ji +1 位作者 Liang Liang Huang Shang Jing Li 《Research in Cold and Arid Regions》 CSCD 2017年第3期280-288,共9页
To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing,a simulated-freezing test with seepage of Xuzhou sand was completed by using a model t... To study the distribution characteristics and variation regularity of the temperature field during the process of seepage freezing,a simulated-freezing test with seepage of Xuzhou sand was completed by using a model test developed in-house equipment.By means of three group freezing tests with different seepage velocities,we discovered the phenomenon of the asymmetry of the temperature field under the influence of seepage.The temperature upstream was obviously higher than that downstream.The temperature gradient upstream was also steeper than that downstream.With a higher seepage velocity,the asymmetry of the temperature field is more pronounced.The asymmetry for the interface temperature profile is more strongly manifest than for the main surface temperature profile.The cryogenic barrier section is somewhat"heartshaped".With the increasing velocity of the seepage flow,the cooling rate of the soil decreases.It takes much time to reach the equilibrium state of the soil mass.In our study,seepage flow velocities of 0 m/d,7.5 m/d,and 15 m/d showed the soilcooling rate of 4.35°C/h,4.96°C/h,and 1.72°C/h,respectively. 展开更多
关键词 FREEZING temperature field SEEPAGE FREEZING SOIL BARRIER model test
下载PDF
THE COUPLED FEM ANALYSIS OF THE TRANSIENT TEMPERATURE FIELD DURING INERTIA FRICTION WELDING OF GH4169 ALLOY 被引量:8
18
作者 L.W. Zhang J.B. Pei +4 位作者 Q.Z. Zhang C.D. Liu W.H. Zhu S. Qu J.H. Wang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2007年第4期301-306,共6页
The inertia friction welding process is a non-linear process because of the interaction between the temperature field and the material properties as well as the friction force. A thermo-mechanical coupled finite eleme... The inertia friction welding process is a non-linear process because of the interaction between the temperature field and the material properties as well as the friction force. A thermo-mechanical coupled finite element model is established to simulate the temperature field of this process. The transient temperature distribution during the inertia friction welding process of two similar workpieces of GH4169 alloy is calculated. The region of the circular cross-section of the workpiece is divided into a number of four-nodded isoparametric elements. In this model, the temperature dependent thermal properties, time dependent heat inputs, contact condition of welding interface, and deformation of the flash were considered. At the same time, the convection and radiation heat losses at the surface of the workpieces were also considered. A temperature data acquisition system was developed. The temperature at some position near the welding interface was measured using this system. The calculated temperature agrees well with the experimental data. The deformation of the flash and the factor affecting the temperature distribution at the welding interface are also discussed. 展开更多
关键词 inertia friction welding temperature field numerical simulation finite element method
下载PDF
SIMULATION ON TEMPERATURE FIELD OF FRICTION STIR WELDED JOINTS OF 2024-T4 Al 被引量:6
19
作者 S.X. Lu J. C. Yan W.G. Li S. Q. Yang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第4期552-556,共5页
The thermal model of FSW based on the thermal elastic-plastic finite element method, and the transient temperature distribution of FS welded joints of 2024-T4 Al was simulated by using this model, which provides usefu... The thermal model of FSW based on the thermal elastic-plastic finite element method, and the transient temperature distribution of FS welded joints of 2024-T4 Al was simulated by using this model, which provides useful information for the investigation of FSW process. Simulation resuits show that the temperature distribution of the weld gradually decreases toward periphery in a radiate format, whose center is the probe, and the highest temperature in the weld can reach about 400℃. The initial terminal of the weld is a zone, in which the temperature gradient is great, and defects of the welding are easily produced in this zone. Temperature change at the end of the welded joint is as layer variation, the local serious defects are not easy to produce in this zone. 展开更多
关键词 friction stir welding aluminium alloy temperature field SIMULATION
下载PDF
Analysis of temperature field characteristics based on subgrade site measurements of Harbin-Qiqihar High-speed Railway in a deep seasonal frozen soil region 被引量:9
20
作者 ZuRun Yue BoWen Tai TieCheng Sun 《Research in Cold and Arid Regions》 CSCD 2015年第5期547-553,共7页
Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher... Recent years have seen a large number of high-speed railways built and will be built in seasonal frozen soil regions ot China. Although high-speed railways are characterized by being fast, comfortable and safe, higher standards for defor- mation of the railways' frozen subgrade are required. Meanwhile, changes in subgrade soil temperatures are the main factors affecting the deformation of frozen subgrade. Therefore, this paper selected typical test subgrade sections of the Harbin-Qiqihar Line, a special line for passenger transport built in the deep seasonal frozen soil regions of China, to monitor field temperatures. Also, the temperature changing laws of railways' subgrade in this region was analyzed by using testing data, the aim of which is to provide a technical support for future design and construction of buildings and structures in a deep seasonal frozen soil region. 展开更多
关键词 temperature field deep seasonal permafrost soils railways SUBGRADE
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部