期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Thermodynamic performance assessment of vacuum membrane-based dehumidification and air carrying energy radiant air-conditioning system(VMD-ACERS) 被引量:1
1
作者 Liang Chun Guangcai Gong +1 位作者 Xi Fang Pei Peng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期217-227,共11页
Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which inte... Temperature and humidity independent control(THIC)air-conditioning system is a promising technology.In this work,a novel temperature and humidity independent control(THIC)system is proposed,namely VMD-ACERS,which integrates vacuum membrane-based dehumidification and air carrying energy radiant air-conditioning system.This work establishes a novel coefficient of performance(COP)model of VMD-ACERS.The main parameters affecting the COP of conventional fan coil unit cooling system(FCUCS)and VMD-ACERS are investigated.The performance of FCUCS and VMD-ACERS are compared,and the energy-saving potential of VMD-ACERS is proved.Results indicate that,for FCUCS,the importance ranking of parameters is basically stable.However,for VMD-ACERS,the importance ranking will be affected by FCU and refrigerant.The most important parameters of VMD-ACERS are condensation temperature and permeate side pressure.On the contrary,superheating,subcooling are relatively less important parameters.For VMD-ACERS,it is not necessary to pursue the membrane with very high selectivity,because the selectivity of membrane would also be a less important parameter when it reaches 500.The COP of VMD-ACERS is higher than that of FCUCS when the permeate side pressure is higher than 8 k Pa.The VMD-ACERS solves two technical problems about power-saving and thermal comfort of conventional THIC,and can extend the application of THIC air-conditioning system. 展开更多
关键词 Fan coil unit cooling system temperature and humidity independent control ACERS Vacuum membrane-based dehumidification COP
下载PDF
Performance Analysis of a Combined Absorption Refrigeration-Liquid Desiccant Dehumidification THIC System Driven by Low-Grade Heat Source 被引量:5
2
作者 XU Cong SUI Jun +2 位作者 DAI Yuze LIU Feng LIU Hao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第5期1193-1205,共13页
Traditional condensing air-conditioning systems consume large amounts of energy in hot and humid areas,and it is difficult to achieve simultaneous control of temperature and humidity.A combined absorption refrigeratio... Traditional condensing air-conditioning systems consume large amounts of energy in hot and humid areas,and it is difficult to achieve simultaneous control of temperature and humidity.A combined absorption refrigeration(AR)and liquid desiccant dehumidification(LDD)air-conditioning system based on cascade utilization of low-grade heat source is proposed.The system can realize independent control of temperature and humidity and carry out profound recovery of low-grade heat sources.Under the design conditions,the heat utilization rate C reaches 21.05%,which is 2.73 times that of the conventional absorption refrigeration reference system.A parametric sensitivity analysis is performed to optimize the system.The C increases from 9.79%to 18.55%and the coefficient of performance C O P t increases from 0.33 to 0.35 with an increase in chilled water temperature from 7°C to 15°C.With an increase in regenerant solution temperature from 60°C to 70°C,the C achieves the optimal value of 21.05%at 68°C.C decreases from 21.05%to 15.05%as the concentration of the regenerant solution increases from 36%to 40%.Under variable environmental temperature and humidity,the C the proposed system changes within a small range and stays much higher than that of the reference system with the same quality heat source,which indicates that the proposed system has a better adaptability to changing environmental parameters. 展开更多
关键词 temperature and humidity independent control(THIC) low-grade heat source cascade utilization heat utilization rate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部