Due to their significant roles in the radiation belts dynamics, chorus waves are widely investigaled in observations, experiments, and simulations. In this paper, numerical studies for the generation of chorus-like wa...Due to their significant roles in the radiation belts dynamics, chorus waves are widely investigaled in observations, experiments, and simulations. In this paper, numerical studies for the generation of chorus-like waves in a launching device, dipole research experiment (DREX), are carried out by a hybrid code. The DREX plasma is generated b} electron cyclotron resonance (ECR), which leads to an intrinsic temperature anisotropy of energetic electrons. Thus the whistler instability can be excited in the device. We then investigate the effects of three parameters, i.e., the cold plasma density no, the hot plasma density nh, and the parallel thermal velocity of energetic electrons, on the generation of chorus-like waves under the DREX design parameters. It is obtained that a larger temperature anisotropy is needed to excite chorus-like waves with a high nc with other parameters fixed. Then we fix the plasma density and parallel thermal velocity, while varying the hot plasma density. It is found that with the increase of nh, the spectrum of the generated waves changes from no chorus elements, to that with several chorus elements, and then further to broad-band hiss-like waves. Besides, different structures of chorus- like waves, such as rising-tone and/or falling-tone structures, can be generated at different parallel thermal velocities in the DREX parameter range.展开更多
The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency ...The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency (ω〈〈ωci, ωci the ion gyrofrequency) waves, including the plasma temperature anisotropy effect, is presented. We investigate the properties of low-frequency waves when the parallel temperature exceeds the perpendicular temperature, and especially their dependence on the propagation angle, pressure anisotropy, and energy closures. The results show that both the instable Alfven and slow modes are purely growing. The growth rate of the Alfven wave is not affected by the propagation angle or energy closures, while that of the slow wave depends sensitively on the propagation angle and energy closures as well as pressure anisotropy. The fast wave is always stable. We also show how to elaborate the symbolic calculation of the dispersion equation performed using Mathematica Notebook.展开更多
Using the Cluster data from 2001 to 2010, we studied spatial distribution of effective ion polytropic index in the southern high latitude magnetosheath, and joint-modulation of ion polytropic index by temperature anis...Using the Cluster data from 2001 to 2010, we studied spatial distribution of effective ion polytropic index in the southern high latitude magnetosheath, and joint-modulation of ion polytropic index by temperature anisotropy and MHD disturbances. The magnetosheath ions generally experience various polytropic processes with different polytropic index. The median polytropic indexes of magnetosheath ions in the GSE X-Y plane decrease toward the bow shock. Near the magnetopause, the median polytropic indexes are basically between isothermal and adiabatic except in the duskside flank close to the terminator. The analysis of correlation coefficient of perturbed ion number density with parallel magnetic field CC_δnδB_‖ and ion temperature anisotropy parameter A_T, indicates that the dominant MHD disturbance near magnetopause is slow mode with larger ion temperature anisotropy, and there are various modes of MHD disturbances with insignificant ion temperature anisotropy near the bow shock.The polytropic index modulated by slow mode disturbances is generally larger than that modulated by fast mode disturbances, and the larger ion temperature anisotropy, the larger polytropic index. The median polytropic indexes modulated jointly by slow mode disturbances and the strong ion temperature anisotropy can be larger than 1.0, while those modulated by fast mode disturbances and weak temperature anisotropy can be even possibly close to zero. Moreover, because of pronounced dusk-favored asymmetry of ion temperature anisotropy, the median polytropic index in the dawnside flank of the magnetosheath near the terminator is smaller than that in the duskside flank of the magnetosheath. The good correspondence between the distributions of median polytropic indexes and ion temperature anisotropy and MHD disturbances indicates that the ion temperature anisotropy and MHD disturbances determine the distribution of the polytropic index in the magnetosheath.展开更多
In this work,the anomalous transport driven by the ion temperature gradient instability is investigated in an anisotropic deuterium-tritium(D-T)plasma.The anisotropic factorα,defined as the ratio of perpendicular tem...In this work,the anomalous transport driven by the ion temperature gradient instability is investigated in an anisotropic deuterium-tritium(D-T)plasma.The anisotropic factorα,defined as the ratio of perpendicular temperature to parallel temperature,is introduced to describe the temperature anisotropy in the equilibrium distribution function.The linear dispersion relation in local kinetic limit is derived,and then numerically evaluated to study the dependence of mode frequency on the anisotropic factorαof D and the fraction of T particleεTby choosing three sets of typical parameters,denoted as the cyclone base case,ITER and CFETR cases.Based on the linear results,the mixing length model approximation is adopted to analyze the quasi-linear particle and energy fluxes for D and T.It is found that choosing smallαand largeεTis beneficial for the confinement of particle and energy for D and T.This work may be helpful for the estimation of turbulent transport level in the ITER and CFETR devices.展开更多
Ion pickup by a monochromatic low-frequency Alfv6n wave, which propagates along the background magnetic field, has recently been investigated in a low beta plasma (Lu and Li 2007 Phys. Plasmas 14 042303). In this pa...Ion pickup by a monochromatic low-frequency Alfv6n wave, which propagates along the background magnetic field, has recently been investigated in a low beta plasma (Lu and Li 2007 Phys. Plasmas 14 042303). In this paper, the monochromatic Alfven wave is generalized to a spectrum of Alfven waves with random phase. It finds that the process of ion pickup can be divided into two stages. First, ions are picked up in the transverse direction, and then phase difference (randomization) between ions due to their different parallel thermal motions leads to heating of the ions. The heating is dominant in the direction perpendicular to the background magnetic field. The temperatures of the ions at the asymptotic stage do not depend on individual waves in the spectrum, but are determined by the total amplitude of the waves. The effect of the initial ion bulk flow in the parallel direction on the heating is also considered in this paper.展开更多
With one-dimensional (l-D) hybrid simulations we investigate the nonlinear evolu- tion of the ion cyclotron waves excited by the H+ and He2+ temperature anisotropies, and analyze the evolution by using the wavelet...With one-dimensional (l-D) hybrid simulations we investigate the nonlinear evolu- tion of the ion cyclotron waves excited by the H+ and He2+ temperature anisotropies, and analyze the evolution by using the wavelet analysis method. The results show that the proton cyclotron waves with the dominant frequency higher than the helium gyro-frequency (ΩHe = 0.5Ωp, with Ωp and ΩHe the proton and helium gyro-frequencies respectively ) are firstly excited, and then the helium cyclotron waves with the dominant frequency lower than the helium gyro-frequency are excited. The relation of our simulation results to the BIF(bifurcated) (there are two peaks in the wave spectrum: one above and one below ΩHe) and CON(continuous) (continuous spectrum from 0.1 Ωp to 1.0 Ωp) wave spectra observed in the magnetosheath are discussed.展开更多
Magnetic spectrum of the electromagnetic ion cyclotron waves in the terrestrial plasma depletion layer (PDL) are sometimes observed to have a BIF (bifurcated) signature, where a diminution around 0.5Ωp with Ωp t...Magnetic spectrum of the electromagnetic ion cyclotron waves in the terrestrial plasma depletion layer (PDL) are sometimes observed to have a BIF (bifurcated) signature, where a diminution around 0.5Ωp with Ωp the proton gyrofrequency, occurs between two activity peaks in the spectrum. By one-dimensional hybrid simulations, the effect of relative drift velocities between protons and He2+ on the magnetic spectral signatures in the PDL is studied. The results show that the relative drift velocity enhances the development of proton cyclotron waves and declines the development of helium cyclotron waves. The proton cyclotron waves are firstly excited, and followed by the excitation of helium cyclotron waves due to the increase in the relative drift velocity. Moreover, the boundary between two activity peaks gets obscure.展开更多
Solar coronal loops are frequently accompanied by the field-aligned currents, which drive instabilities if the drift velocity u0 > v A the Alfv′en velocity. For our choice of parameters, the critical threshold val...Solar coronal loops are frequently accompanied by the field-aligned currents, which drive instabilities if the drift velocity u0 > v A the Alfv′en velocity. For our choice of parameters, the critical threshold value of u0/v A is ~ 3.0 for growth and the corresponding current filling factor ~ 10-3-10-4. Below this value we are no longer in the kinetic regime.The coronal loops also have short-scale density gradients within each loop. The electron resonance in the presence of density gradient causes the drift mode to grow. We study the effect of these two free energy sources, the electron drift and the density gradient, in the presence of temperature anisotropy T⊥_α > T∥_α. These effects simultaneously exist in the coronae. Using gyrokinetic theory, we investigate the influence of these effects, examine how they interplay with each other and study the consequent growth of the magnetosonic wave. We observe that kinetic instability driven by density gradient can be suppressed by field-aligned currents. The temperature anisotropy with chosen signatures causes further stabilizing effect. The results may prove useful to study the heating mechanism of solar coronal loops, acceleration of particles and confinement of particles in the thermonuclear reactors.展开更多
Employing the linearized Vlasov-Maxwell equations, a generalized dispersion relation for the ordinary mode is derived by employing the Cairns distribution function. The instability of the mode and its threshold condit...Employing the linearized Vlasov-Maxwell equations, a generalized dispersion relation for the ordinary mode is derived by employing the Cairns distribution function. The instability of the mode and its threshold condition is investigated. It is found that the temperature anisotropy χ= TⅡ I⊥〉 1 required to excite the instability varies with density values whereas the growth rate is dependent on various parameters like non-thermMity A, equilibrium number density no and temperature anisotropy. It is found that with the increase in the values of any of the parameters A, no and X, the growth rate is enhanced and the k-domain is enlarged. The results are applicable for space plasma environments like solar wind.展开更多
The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion techn...The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion technique.X-ray diffraction(XRD)measurements show that the rare-earth doped compositions crystallized in rhombohedral symmetry of space group R3 c.The undoped sample consisted needle shape particles while rare earth substitution preferred platelet like particles as clarified from high resolution transmission electron microscopy(HRTEM).Morphological features were examined using field emission scanning electron microscopy(FESEM).Magnetization measurements showed that Yb^3+ samples possessed the highest room temperature saturation magnetization while when Bi^3+ ions were substituted by La^3+ ions,a smaller MS(0.28 emu/g)was obtained.The coexistence of ferroelectric and magnetic transitions was detected using DSC and χM,indicating the multiferroic characteristics of Bi(0.92)Pb(0.04)RE(0.04)FeO3 crystallites.The Néel temperature shifted upwards with decreasing the ionic radius of rare earth ion.Nice correlation was established between microstructure,morphology and magnetic properties in view of the contribution of magnetocrystalline and shape anisotropy in the magnetic parameters values.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41674165,41631071,41474142,and 41674174)the China Postdoctoral Science Foundation(Grant No.2015M570283)
文摘Due to their significant roles in the radiation belts dynamics, chorus waves are widely investigaled in observations, experiments, and simulations. In this paper, numerical studies for the generation of chorus-like waves in a launching device, dipole research experiment (DREX), are carried out by a hybrid code. The DREX plasma is generated b} electron cyclotron resonance (ECR), which leads to an intrinsic temperature anisotropy of energetic electrons. Thus the whistler instability can be excited in the device. We then investigate the effects of three parameters, i.e., the cold plasma density no, the hot plasma density nh, and the parallel thermal velocity of energetic electrons, on the generation of chorus-like waves under the DREX design parameters. It is obtained that a larger temperature anisotropy is needed to excite chorus-like waves with a high nc with other parameters fixed. Then we fix the plasma density and parallel thermal velocity, while varying the hot plasma density. It is found that with the increase of nh, the spectrum of the generated waves changes from no chorus elements, to that with several chorus elements, and then further to broad-band hiss-like waves. Besides, different structures of chorus- like waves, such as rising-tone and/or falling-tone structures, can be generated at different parallel thermal velocities in the DREX parameter range.
基金supported by National Natural Science Foundation of China(Nos.10973043,41074107)Ministry of Science and Technology of China(No.2011CB811402)
文摘The plasma temperature (or the kinetic pressure) anisotropy is an intrinsic characteristic of a collisionless magnetized plasma. In this paper, based on the two-fluid model, a dispersion equation of low-frequency (ω〈〈ωci, ωci the ion gyrofrequency) waves, including the plasma temperature anisotropy effect, is presented. We investigate the properties of low-frequency waves when the parallel temperature exceeds the perpendicular temperature, and especially their dependence on the propagation angle, pressure anisotropy, and energy closures. The results show that both the instable Alfven and slow modes are purely growing. The growth rate of the Alfven wave is not affected by the propagation angle or energy closures, while that of the slow wave depends sensitively on the propagation angle and energy closures as well as pressure anisotropy. The fast wave is always stable. We also show how to elaborate the symbolic calculation of the dispersion equation performed using Mathematica Notebook.
基金supported by the National Natural Science Foundation of China(Grant Nos.41431071,41504127,and 41474124)
文摘Using the Cluster data from 2001 to 2010, we studied spatial distribution of effective ion polytropic index in the southern high latitude magnetosheath, and joint-modulation of ion polytropic index by temperature anisotropy and MHD disturbances. The magnetosheath ions generally experience various polytropic processes with different polytropic index. The median polytropic indexes of magnetosheath ions in the GSE X-Y plane decrease toward the bow shock. Near the magnetopause, the median polytropic indexes are basically between isothermal and adiabatic except in the duskside flank close to the terminator. The analysis of correlation coefficient of perturbed ion number density with parallel magnetic field CC_δnδB_‖ and ion temperature anisotropy parameter A_T, indicates that the dominant MHD disturbance near magnetopause is slow mode with larger ion temperature anisotropy, and there are various modes of MHD disturbances with insignificant ion temperature anisotropy near the bow shock.The polytropic index modulated by slow mode disturbances is generally larger than that modulated by fast mode disturbances, and the larger ion temperature anisotropy, the larger polytropic index. The median polytropic indexes modulated jointly by slow mode disturbances and the strong ion temperature anisotropy can be larger than 1.0, while those modulated by fast mode disturbances and weak temperature anisotropy can be even possibly close to zero. Moreover, because of pronounced dusk-favored asymmetry of ion temperature anisotropy, the median polytropic index in the dawnside flank of the magnetosheath near the terminator is smaller than that in the duskside flank of the magnetosheath. The good correspondence between the distributions of median polytropic indexes and ion temperature anisotropy and MHD disturbances indicates that the ion temperature anisotropy and MHD disturbances determine the distribution of the polytropic index in the magnetosheath.
基金supported by the National MCF Energy R&D Program of China(No.2019YFE03060000)National Natural Science Foundation of China(Nos.12005063,12175228,11875131 and 11675053)。
文摘In this work,the anomalous transport driven by the ion temperature gradient instability is investigated in an anisotropic deuterium-tritium(D-T)plasma.The anisotropic factorα,defined as the ratio of perpendicular temperature to parallel temperature,is introduced to describe the temperature anisotropy in the equilibrium distribution function.The linear dispersion relation in local kinetic limit is derived,and then numerically evaluated to study the dependence of mode frequency on the anisotropic factorαof D and the fraction of T particleεTby choosing three sets of typical parameters,denoted as the cyclone base case,ITER and CFETR cases.Based on the linear results,the mixing length model approximation is adopted to analyze the quasi-linear particle and energy fluxes for D and T.It is found that choosing smallαand largeεTis beneficial for the confinement of particle and energy for D and T.This work may be helpful for the estimation of turbulent transport level in the ITER and CFETR devices.
基金supported by the National Natural Science Foundation of China(Grants Nos 40725013 and 40674093)Chinese Academy of Sciences(Grant No KJCX2-YW-N28 9140C08060507ZCZJ19)
文摘Ion pickup by a monochromatic low-frequency Alfv6n wave, which propagates along the background magnetic field, has recently been investigated in a low beta plasma (Lu and Li 2007 Phys. Plasmas 14 042303). In this paper, the monochromatic Alfven wave is generalized to a spectrum of Alfven waves with random phase. It finds that the process of ion pickup can be divided into two stages. First, ions are picked up in the transverse direction, and then phase difference (randomization) between ions due to their different parallel thermal motions leads to heating of the ions. The heating is dominant in the direction perpendicular to the background magnetic field. The temperatures of the ions at the asymptotic stage do not depend on individual waves in the spectrum, but are determined by the total amplitude of the waves. The effect of the initial ion bulk flow in the parallel direction on the heating is also considered in this paper.
基金supported by National Natural Science Foundation of China (Nos.40725013,40674093)the Open Research Program Foundation of State Key Laboratory for Space Weather,Chinese Academy Sciences
文摘With one-dimensional (l-D) hybrid simulations we investigate the nonlinear evolu- tion of the ion cyclotron waves excited by the H+ and He2+ temperature anisotropies, and analyze the evolution by using the wavelet analysis method. The results show that the proton cyclotron waves with the dominant frequency higher than the helium gyro-frequency (ΩHe = 0.5Ωp, with Ωp and ΩHe the proton and helium gyro-frequencies respectively ) are firstly excited, and then the helium cyclotron waves with the dominant frequency lower than the helium gyro-frequency are excited. The relation of our simulation results to the BIF(bifurcated) (there are two peaks in the wave spectrum: one above and one below ΩHe) and CON(continuous) (continuous spectrum from 0.1 Ωp to 1.0 Ωp) wave spectra observed in the magnetosheath are discussed.
基金supported by National Natural Science Foundation of China (No. 40974097)the Specialized Research Fund for State Key Laboratories, China
文摘Magnetic spectrum of the electromagnetic ion cyclotron waves in the terrestrial plasma depletion layer (PDL) are sometimes observed to have a BIF (bifurcated) signature, where a diminution around 0.5Ωp with Ωp the proton gyrofrequency, occurs between two activity peaks in the spectrum. By one-dimensional hybrid simulations, the effect of relative drift velocities between protons and He2+ on the magnetic spectral signatures in the PDL is studied. The results show that the relative drift velocity enhances the development of proton cyclotron waves and declines the development of helium cyclotron waves. The proton cyclotron waves are firstly excited, and followed by the excitation of helium cyclotron waves due to the increase in the relative drift velocity. Moreover, the boundary between two activity peaks gets obscure.
文摘Solar coronal loops are frequently accompanied by the field-aligned currents, which drive instabilities if the drift velocity u0 > v A the Alfv′en velocity. For our choice of parameters, the critical threshold value of u0/v A is ~ 3.0 for growth and the corresponding current filling factor ~ 10-3-10-4. Below this value we are no longer in the kinetic regime.The coronal loops also have short-scale density gradients within each loop. The electron resonance in the presence of density gradient causes the drift mode to grow. We study the effect of these two free energy sources, the electron drift and the density gradient, in the presence of temperature anisotropy T⊥_α > T∥_α. These effects simultaneously exist in the coronae. Using gyrokinetic theory, we investigate the influence of these effects, examine how they interplay with each other and study the consequent growth of the magnetosonic wave. We observe that kinetic instability driven by density gradient can be suppressed by field-aligned currents. The temperature anisotropy with chosen signatures causes further stabilizing effect. The results may prove useful to study the heating mechanism of solar coronal loops, acceleration of particles and confinement of particles in the thermonuclear reactors.
文摘Employing the linearized Vlasov-Maxwell equations, a generalized dispersion relation for the ordinary mode is derived by employing the Cairns distribution function. The instability of the mode and its threshold condition is investigated. It is found that the temperature anisotropy χ= TⅡ I⊥〉 1 required to excite the instability varies with density values whereas the growth rate is dependent on various parameters like non-thermMity A, equilibrium number density no and temperature anisotropy. It is found that with the increase in the values of any of the parameters A, no and X, the growth rate is enhanced and the k-domain is enlarged. The results are applicable for space plasma environments like solar wind.
文摘The crystal structure,magnetic and electrical properties of Bi(0.96)Pb(0.04) FeO3 and Bi(0.92)Pb(0.04)RE(0.04)FeO3(RE=La,Sm,Dy and Yb)polycrystalline samples were prepared by the flash autocombustion technique.X-ray diffraction(XRD)measurements show that the rare-earth doped compositions crystallized in rhombohedral symmetry of space group R3 c.The undoped sample consisted needle shape particles while rare earth substitution preferred platelet like particles as clarified from high resolution transmission electron microscopy(HRTEM).Morphological features were examined using field emission scanning electron microscopy(FESEM).Magnetization measurements showed that Yb^3+ samples possessed the highest room temperature saturation magnetization while when Bi^3+ ions were substituted by La^3+ ions,a smaller MS(0.28 emu/g)was obtained.The coexistence of ferroelectric and magnetic transitions was detected using DSC and χM,indicating the multiferroic characteristics of Bi(0.92)Pb(0.04)RE(0.04)FeO3 crystallites.The Néel temperature shifted upwards with decreasing the ionic radius of rare earth ion.Nice correlation was established between microstructure,morphology and magnetic properties in view of the contribution of magnetocrystalline and shape anisotropy in the magnetic parameters values.