期刊文献+
共找到98篇文章
< 1 2 5 >
每页显示 20 50 100
ISSR analysis of Caragana microphylla(Leguminosae) in different temperature gradients
1
作者 WenDa Huang XueYong Zhao +4 位作者 YuLin Li YuQiang Li YaYong Luo Jing Feng Na Su 《Research in Cold and Arid Regions》 CSCD 2015年第1期99-103,共5页
Caragana microphylla is the most dominant and constructive shrub species in the Horqin Sandy Land of northeastern China. We evaluated the level of genetic variation within and among C. microphylla populations sampled ... Caragana microphylla is the most dominant and constructive shrub species in the Horqin Sandy Land of northeastern China. We evaluated the level of genetic variation within and among C. microphylla populations sampled from three different temperature gradients in the Horqin Sandy Land by using inter-simple sequence repeat polymorphism (ISSR) molecular markers. The results show that eight ISSR primers generated 127 bands, of which 123 (96.85%) were polymorphic. At the species level, genetic diversity was relatively high (P = 96.85%, h = 0.3143, I = 0.4790). The highest genetic diversity was observed in the Subp6 population from low temperature regions, whereas the lowest diversity was found in the Subp2 population from high temperature regions. Six populations of C. microphylla clustered into two clades. These results have important implications for restoring and managing the degraded ecosystem in arid and semi-arid areas. 展开更多
关键词 Caragana microphylla temperature gradients ISSR Horqin Sandy Land
下载PDF
Suppression of ice nucleation in supercooled water under temperature gradients 被引量:1
2
作者 王利平 孔维梁 +2 位作者 边佩翔 王福新 刘洪 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第6期657-666,共10页
Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gra... Understanding the behaviours of ice nucleation in non-isothermal conditions is of great importance for the preparation and retention of supercooled water. Here ice nucleation in supercooled water under temperature gradients is analyzed thermodynamically based on classical nucleation theory(CNT). Given that the free energy barrier for nucleation is dependent on temperature, different from a uniform temperature usually used in CNT, an assumption of linear temperature distribution in the ice nucleus was made and taken into consideration in analysis. The critical radius of the ice nucleus for nucleation and the corresponding nucleation model in the presence of a temperature gradient were obtained. It is observed that the critical radius is determined not only by the degree of supercooling, the only dependence in CNT, but also by the temperature gradient and even the Young's contact angle. Effects of temperature gradient on the change in free energy, critical radius,nucleation barrier and nucleation rate with different contact angles and degrees of supercooling are illustrated successively.The results show that a temperature gradient will increase the nucleation barrier and decrease the nucleation rate, particularly in the cases of large contact angle and low degree of supercooling. In addition, there is a critical temperature gradient for a given degree of supercooling and contact angle, at the higher of which the nucleation can be suppressed completely. 展开更多
关键词 supercooled water ice nucleation temperature gradient thermodynamic analysis classical nucleation theory
下载PDF
Experimental study on moisture migration of remodeled clay under different overburden pressure and temperature gradients 被引量:1
3
作者 Feng Ming DongQing Li +1 位作者 Xing Huang JianHong Fang 《Research in Cold and Arid Regions》 CSCD 2013年第5期562-571,共10页
Unidirectional freezing experiments under overburden pressure were carried out, in order to study the driving force of mois- ture migration of remodeled clay during freezing, through improving the indoor moisture migr... Unidirectional freezing experiments under overburden pressure were carried out, in order to study the driving force of mois- ture migration of remodeled clay during freezing, through improving the indoor moisture migration test device. Overburden pressure and cooling temperature with the same circumstance were changed to determine the influence on water migration of a single factor. Results show that water content increases above the location of the final ice lenses and decreases below the loca- tion. When the overburden pressure increases, water intake gradually decreases and the time starting to absorb water is delayed. The location of the final ice lens is not sensitive to overburden pressure but influenced by the temperature boundary. The im- pact of overburden pressure and maximum temperature is not obvious. Freezing rate is not sensitive to overburden pressure but influenced by temperature, and it increases when the cold temperature decreases. Frost heave and water intake flow in- creases with increasing time and rises up to a peak value, and then decreases. During the freezing process, water intake flow increases when freezing rate decreases. Water intake flow decreases when the overburden pressure increases when the cold temperature decreases. Finally, we expanded the segregation theory, and proposed a model to describe the relationship between water intake flow and freezing rate. 展开更多
关键词 frost heave moisture migration overburden pressure temperature gradient open system indoor experiments
下载PDF
Effect of Sinusoidal Heating on Natural Convection Coupled to Thermal Radiation in a Square Cavity Subjected to Cross Temperature Gradients
4
作者 Rachid El Ayachi Abdelghani Raji +2 位作者 Mohamed Naimi Hassan Elharfi Mohammed Hasnaoui 《Journal of Electronics Cooling and Thermal Control》 2013年第1期7-21,共15页
Coupled natural convection and surface radiation within a square cavity, filled with air and submitted to discrete heating and cooling from all its walls, is studied numerically. The thermally active elements are cent... Coupled natural convection and surface radiation within a square cavity, filled with air and submitted to discrete heating and cooling from all its walls, is studied numerically. The thermally active elements are centrally located on the walls of the cavity. Two heating modes, called SB and SV, are considered. They correspond to bottom and vertical left elements sinusoidally heated in time, respectively, while the top and vertical right ones are constantly cooled. The remaining portions of all the walls are considered adiabatic. The parameters governing the problem are the amplitude and the period of the temporally sinusoidal temperature, the emissivity of the walls , the relative lengths of the active elements and the Rayleigh number . The effect of such parameters on flow and thermal fields and the resulting heat transfer is examined. It is shown that, during a flow cycle, the flow structure can present complex behavior, depending on the emissivity and the amplitude and period of the exciting temperature. The rate of heat transfer is generally enhanced in the case of sinusoidal heating. Also, the resonance phenomenon existence, characterized by maximum fluctuations in flow intensity and heat transfer, is proved in this study. 展开更多
关键词 Natural Convection Thermal Radiation Heatlines Cross gradients of temperature Periodic Heating Resonant Heat Transfer Numerical Study
下载PDF
Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport
5
作者 刘逸飞 李继全 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第1期8-15,共8页
The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic... The effects of impurities on ion temperature gradient(ITG)driven turbulence transport in tokamak core plasmas are investigated numerically via global simulations of microturbulence with carbon impurities and adiabatic electrons.The simulations use an extended fluid code(ExFC)based on a four-field gyro-Landau-fluid(GLF)model.The multispecies form of the normalized GLF equations is presented,which guarantees the self-consistent evolution of both bulk ions and impurities.With parametric profiles of the cyclone base case,well-benchmarked ExFC is employed to perform simulations focusing on different impurity density profiles.For a fixed temperature profile,it is found that the turbulent heat diffusivity of bulk ions in a quasi-steady state is usually lower than that without impurities,which is contrary to the linear and quasilinear predictions.The evolutions of the temperature gradient and heat diffusivity exhibit a fast relaxation process,indicating that the destabilization of the outwardly peaked impurity profile is a transient state response.Furthermore,the impurity effects from different profiles can obviously influence the nonlinear critical temperature gradient,which is likely to be dominated by linear effects.These results suggest that the improvement in plasma confinement could be attributed to the impurities,most likely through adjusting both heat diffusivity and the critical temperature gradient. 展开更多
关键词 gyro-Landau-fluid simulation impurity effects ion temperature gradient mode turbulence transport
下载PDF
Three-Dimensional Convection in an Inclined Porous Layer Subjected to a Vertical Temperature Gradient
6
作者 Ivan Shubenkov Tatyana Lyubimova Evgeny Sadilov 《Fluid Dynamics & Materials Processing》 EI 2024年第9期1957-1970,共14页
In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gra... In this paper,we study the onset and development of three-dimensional convection in a tilted porous layer saturated with a liquid.The layer is subjected to a gravitational field and a strictly vertical temperature gradient.Typically,problems of thermal convection in tilted porous media saturated with a liquid are studied by assuming constant different temperatures at the boundaries of the layer,which prevent these systems from supporting conductive(non-convective)states.The boundary conditions considered in the present work allow a conductive state and are representative of typical geological applications.In an earlier work,we carried out a linear stability analysis of the conductive state.It was shown that at any layer tilt angles,the most dangerous type of disturbances are longitudinal rolls.Moreover,a non-zero velocity component exists in z-direction.In the present work,threedimensional non-linear convection regimes are studied.The original three-dimensional problem is reduced to two-dimensional one with an analytical expression for the velocity z-component v_(z)=v_(z)(x,y).It is shown that the critical Rayleigh number values obtained through numerical solutions of the obtained 2D problem by a finite difference method for different layer inclination angles,are in a good agreement with those predicted by the linear theory.The number of convective rolls realized in nonlinear calculations also fits the linear theory predictions for a given cavity geometry.Calculations carried out at low supercriticalities show that a direct bifurcation takes place.With increasing supercriticality,no transitions to other convective regimes are detected.The situation studied in this problem can be observed in oil-bearing rock formations under the influence of a geothermal temperature gradient,where the ensuing fluid convection can affect the distribution of oil throughout the layer. 展开更多
关键词 Thermal convection inclined layer porous media vertical temperature gradient
下载PDF
Analysis of piezoelectric semiconductor fibers under gradient temperature changes
7
作者 Shuangpeng LI Ruoran CHENG +1 位作者 Nannan MA Chunli ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第2期311-320,共10页
Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ... Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects. 展开更多
关键词 piezoelectric semiconductor(PS)fiber one-dimensional(1D)model piezotronic effect gradient temperature change
下载PDF
Vertical temperature gradients of concrete box girder caused by solar radiation in Sichuan-Tibet railway 被引量:2
8
作者 Tao SHI Xing-wang SHENG +1 位作者 Wei-qi ZHENG Ping LOU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第5期375-387,共13页
Spatial and temporal temperature variations are critical for concrete box girders,and non-uniform temperature distributions induced by solar radiation depend on the structural shapes and shadows cast on them.There hav... Spatial and temporal temperature variations are critical for concrete box girders,and non-uniform temperature distributions induced by solar radiation depend on the structural shapes and shadows cast on them.There have been many studies of temperature distributions and temperature gradients of concrete box girders,but few have considered a high altitude plateau climatic environment.In this study,the nonlinear temperature distributions of concrete box girders in the Sichuan-Tibet railway caused by solar radiation were investigated based on experimental analysis,real-time shadow-selection algorithm,and finite element method.Furthermore,a vertical temperature gradient model of the concrete box girders was obtained.The vertical temperature gradient values first rise,then decrease,and finally rise again from Chengdu to Lhasa,with samples forming a normal distribution.The recommended vertical temperature gradient value was 25℃with a confidence interval of 95%.This provides a reference for the design and maintenance of concrete box girders on the Sichuan-Tibet railway. 展开更多
关键词 Concrete box girder Solar radiation temperature gradient Sichuan-Tibet railway Probability statistics
原文传递
Temperature Gradient Analyses of a Tubular Solid Oxide Fuel Cell Fueled by Methanol
9
作者 Qidong Xu Meiting Guo +5 位作者 Lingchao Xia Zheng Li Qijiao He Dongqi Zhao Keqing Zheng Meng Ni 《Transactions of Tianjin University》 EI CAS 2023年第1期14-30,共17页
Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to inve... Thermal management in solid oxide fuel cells(SOFC)is a critical issue due to non-uniform electrochemical reactions and convective fl ows within the cells.Therefore,a 2D mathematical model is established herein to investigate the thermal responses of a tubular methanol-fueled SOFC.Results show that unlike the low-temperature condition of 873 K,where the peak temperature gradient occurs at the cell center,it appears near the fuel inlet at 1073 K because of the rapid temperature rise induced by the elevated current density.Despite the large heat convection capacity,excessive air could not eff ectively eliminate the harmful temperature gradient caused by the large current density.Thus,optimal control of the current density by properly selecting the operating potential could generate a local thermal neutral state.Interestingly,the maximum axial temperature gradient could be reduced by about 18%at 973 K and 20%at 1073 K when the air with a 5 K higher temperature is supplied.Additionally,despite the higher electrochemical performance observed,the cell with a counter-fl ow arrange-ment featured by a larger hot area and higher maximum temperature gradients is not preferable for a ceramic SOFC system considering thermal durability.Overall,this study could provide insightful thermal information for the operating condition selection,structure design,and stability assessment of realistic SOFCs combined with their internal reforming process. 展开更多
关键词 Solid oxide fuel cell MODELING Methanol fuel temperature gradient Internal reforming
下载PDF
Finite Element Simulation of Temperature Variations in Concrete Bridge Girders
10
作者 Hongzhi Liu Shasha Wu +1 位作者 Yongjun Zhang Tongxu Hu 《Fluid Dynamics & Materials Processing》 EI 2023年第6期1551-1572,共22页
The internal temperature of cast-in-place concrete bridges undergoes strong variations during the construction as a result of environmental factors.In order to determine precisely such variations,the present study rel... The internal temperature of cast-in-place concrete bridges undergoes strong variations during the construction as a result of environmental factors.In order to determine precisely such variations,the present study relies on the finite element method,used to model the bridge box girder section and simulate the internal temperature distribution during construction.The numerical results display good agreement with measured temperature values.It is shown that when the external temperature is higher,and the internal and external temperature difference is relatively small,the deviation of the fitting line from existing specifications(Chinese specification,American specification,New Zealand specification)is relatively large and vice versa. 展开更多
关键词 Concrete temperature gradient FE model simulation AASHTO and Chinese temperature norm temperature formula exponential monitoring
下载PDF
Effects of transient temperature gradient on frost heave of saturated silty clay in an open system
11
作者 HongYan Ma YuanFang Cui +2 位作者 JianQiao Zhang Song Li Song Xu 《Research in Cold and Arid Regions》 CSCD 2023年第6期268-277,共10页
Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work in... Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type. 展开更多
关键词 Saturated silty clay Frost heave Transient temperature gradient Frost heave ratio Frost heave rate
下载PDF
On the Features of Thermal Convection in a Compressible Gas
12
作者 Igor B.Palymskiy 《Fluid Dynamics & Materials Processing》 EI 2024年第5期957-974,共18页
The fully nonlinear equations of gas dynamics are solved in the framework of a numerical approach in order to study the stability of the steady mode of Rayleigh-Bénard convection in compressible,viscous and heat-... The fully nonlinear equations of gas dynamics are solved in the framework of a numerical approach in order to study the stability of the steady mode of Rayleigh-Bénard convection in compressible,viscous and heat-conducting gases encapsulated in containers with no-slip boundaries and isothermal top and bottom walls.An initial linear temperature profile is assumed.A map of the possible convective modes is presented assuming the height of the region and the value of the temperature gradient as influential parameters.For a relatively small height,isobaric convection is found to take place,which is taken over by an adiabatic mode when the height exceeds the critical value,or by a super-adiabatic mode in case of a relatively high temperature gradient.In the adiabatic mode,convective flow develops due to adiabatic processes given a stable initial stratification.An analytic formula for the critical height of the region is derived taking into account and neglecting the dependence of the gas viscosity on the temperature.Moreover,an analytic formula is obtained for the upper boundary of the region of applicability of the Boussinesq approximation for incompressible gases.These models for compressible gases are relevant to practical situations such as the study of convective flows in spatially extended gas mixtures when dealing with safety issues related to hydrocarbons stored in gas stations.A dangerous situation arises when the tank is almost empty but some hydrocarbon is left at the bottom of the tank.In the presence of convective flows,the vaporized fuel is mixed with the oxidizer(air)forming a gas-vapor medium.However,if the volumetric concentration of fuel vapor(hydrocarbon)is in the interval between the lower and upper concentration limits of ignition,then the gas-vapor mixture becomes explosive and any accidental spark is sufficient to cause an emergency. 展开更多
关键词 Rayleigh-Bénard convection GAS stable stratification unstable stratification temperature gradient
下载PDF
Solidification microstructure of directionally solidified superalloy under high temperature gradient 被引量:6
13
作者 Zhang Weiguo Liu Lin 《Rare Metals》 SCIE EI CAS CSCD 2012年第6期541-546,共6页
关键词 directional solidification SUPERALLOY high temperature gradient solidification rate MICROSTRUCTURE
下载PDF
Sulfidation roasting of lead and zinc carbonate with sulphur by temperature gradient method 被引量:6
14
作者 郑永兴 刘维 +4 位作者 覃文庆 焦芬 韩俊伟 杨康 罗虹霖 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1635-1642,共8页
In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction s... In order to enhance the lead and zinc recovery from the refractory Pb-Zn oxide ore, a new technology was developed based on sulfidation roasting with sulphur by temperature gradient method. The solid-liquid reaction system was established and the sulfidation thermodynamics of lead and zinc carbonate was calculated with the software HSC 5.0. The effects of roasting temperature,molar ratio of sulphur to lead and zinc carbonate and reaction time in the first step roasting, and holding temperature and time in the second roasting on the sulfidation extent were studied at a laboratory-scale. The experimental results show that the sulfidation extents of lead and zinc are 96.50% and 97.29% under the optimal conditions, respectively, and the artificial galena, sphalerite and wurtzite were formed. By the novel sulfidizing process, it is expected that the sulphides can be recovered by conventional flotation technology. 展开更多
关键词 lead and zinc carbonate SULPHUR ROASTING temperature gradient PYROMETALLURGY
下载PDF
Experimental study of temperature gradient in track slab under outdoor conditions in Chengdu area 被引量:12
15
作者 Pingrui Zhao Xueyi Liu Guan Liu 《Journal of Modern Transportation》 2014年第3期148-155,共8页
Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built u... Temperature is one of the important loads for designing slab track. The characteristic of slab track tem- perature varies greatly with different regional climates. In this work, a bi-block slab track model was built under outdoor conditions in Chengdu area; the statistical characteristic of temperature gradient in track slab and the relationship between temperature gradient and surface air temperature were tested and analyzed. The results show that the track slab temperature gradient will vary periodically according to the surface air temperature, and show a clear nonlinearity along the height direction. The temperature gradient distribution is extremely uneven: the temperature gradient in the top part of the track slab is larger than that in the bottom part; the most frequently occurring temperature gradient of the track slab is around -3.5 ℃/m and more than 75 % locates in the level -10 to 10 ℃/m; concrete with a relatively good heat exchange condition with the surrounding air has a narrower band distribution. In addition, the frequency distribution histogram should exclude the time zone from 00:00 to 06:00 because there is almost no traffic in this period. The amplitude of track slab temperature variation is obviously lower than that of the air temperature variation, and the former is approximately linear with the latter. 展开更多
关键词 Slab track Track slab - temperature gradient temperature field Surface air temperature
下载PDF
Effects of a carbon convection field on large diamond growth under high-pressure high-temperature conditions 被引量:2
16
作者 胡美华 李尚升 +4 位作者 马红安 宿太超 李小雷 胡强 贾晓鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期525-530,共6页
Large diamond crystals were successfully synthesized by a FeNi C system using the temperature gradient method under high-pressure high-temperature conditions. The assembly of the growth cell was improved and the growt... Large diamond crystals were successfully synthesized by a FeNi C system using the temperature gradient method under high-pressure high-temperature conditions. The assembly of the growth cell was improved and the growth process of diamond was investigated. Effects of the symmetry of the carbon convection field around the growing diamond crystal were investigated systematically by adjusting the position of the seed crystal in the melted catalyst/solvent. The results indicate that the morphologies and metal inclusion distributions of the synthetic diamond crystals vary obviously in both symmetric and non-symmetric carbon convection fields with temperature. Moreover, the finite element method was applied to analyze the carbon convection mode of the melted catalyst/solvent around the diamond crystal. This work is helpful for understanding the growth mechanism of diamond. 展开更多
关键词 DIAMOND high pressure and high temperature temperature gradient method carbonconvection field
下载PDF
Finite element analysis of temperature field during multi-layer multi-pass weld-based rapid prototyping 被引量:2
17
作者 赵慧慧 张广军 +1 位作者 殷子强 吴林 《China Welding》 EI CAS 2011年第4期1-5,共5页
During weld-bused rapid prototyping, the component experiences complex thermal process. In this paper, the temperature field evolution, thermal cycle characteristics, and temperature gradients of multi-layer multi-pus... During weld-bused rapid prototyping, the component experiences complex thermal process. In this paper, the temperature field evolution, thermal cycle characteristics, and temperature gradients of multi-layer multi-puss weld-based rapid prototyping are investigated using three-dimensional finite element models presented. The single-puss weld-bused rapid prototyping experiment is carried out. Thermal cycles calculated agree with experimental measurements. Furthermore, simulated results indicate that there exist the pre-heating effect of the fore layer and the post-heating effect of the rear layer in the multi-layer multi-pass weld-based rapid prototyping. In the first layer, the heat accumulates obviously. After the first layer, the dimension increase of the high temperature region behind the molten pool is not obvious. The heat diffusion condition in the first layer is the best, the heat diffusion condition in the second layer is the worst, and the heat diffusion conditions in the higher layers improve gradually. 展开更多
关键词 temperature field finite element analysis weld-based rapid prototyping temperature gradient
下载PDF
Effects of temperature gradient on the interface microstructure and diffusion of diffusion couples:Phase-field simulation 被引量:1
18
作者 李永胜 吴兴超 +2 位作者 刘苇 侯志远 梅浩杰 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期445-451,共7页
The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by pha... The temporal interface microstructures and diffusions in the diffusion couples with the mutual interactions of the temperature gradient, concentration difference and initial aging time of the alloys are studied by phase-field simulation, and the diffusion couples are produced by the initial aged spinodal alloys with different compositions. Temporal composition evolution and volume fraction of the separated phase indicate the element diffusion direction through the interface under the temperature gradient. The increased temperature gradient induces a wide single-phase region on two sides of the interface.The uphill diffusion proceeds through the interface, no matter whether the diffusion direction is up or down with respect to the temperature gradient. For an alloy with short initial aging time, phase transformation accompanying the interdiffusion results in the straight interface with the single-phase regions on both sides. Compared with the temperature gradient,composition difference of diffusion couple and initial aging time of the alloy show greater effects on diffusion and interface microstructure. 展开更多
关键词 INTERFACE DIFFUSION temperature gradient PHASE-FIELD
下载PDF
Temperature-controllable spin-polarized current and spin polarization in a Rashba three-terminal double-quantum-dot device 被引量:1
19
作者 洪学鹍 杨希峰 +1 位作者 冯金福 刘玉申 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第5期492-501,共10页
We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias... We propose a Rashba three-terminal double-quantum-dot device to generate a spin-polarized current and manipulate the electron spin in each quantum dot by utilizing the temperature gradient instead of the electric bias voltage. This device possesses a nonresonant tunneling channel and two resonant tunneling channels. The Keldysh nonequilibrium Green's function techniques are employed to determinate the spin-polarized current flowing from the electrodes and the spin accumulation in each quantum dot. We find that their signs and magnitudes are well controllable by the gate voltage or the temperature gradient. This result is attributed to the change in the slope of the transmission probability at the Fermi levels in the low-temperature region. Importantly, an obviously pure spin current can be injected into or extracted from one of the three electrodes by properly choosing the temperature gradient and the gate voltages. Therefore, the device can be used as an ideal thermal generator to produce a pure spin current and manipulate the electron spin in the quantum dot. 展开更多
关键词 Rashba quantum dot spin polarization spin accumulation temperature gradient
下载PDF
NUMERICAL INVESTIGATION OF STRAIGHT-LINE LASER FORMING UNDER THE TEMPERATURE GRADIENT MECHANISM 被引量:1
20
作者 Y.J. Shi H. Shen Z.Q. Yao J. Hu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第2期144-150,共7页
Laser forraing is a new flexible and dieless forming technique. To achieve the high accuracy forming, the temperature gradient mechanism (TGM) is studied. In the analysis of TGM, the plate bends about x-axis and abo... Laser forraing is a new flexible and dieless forming technique. To achieve the high accuracy forming, the temperature gradient mechanism (TGM) is studied. In the analysis of TGM, the plate bends about x-axis and about y-axis as well. To understand the deformation trend, the numerical simulation of deformation of plate is conducted by choosing different laser powers, laser spot diameters, scanning speeds, lengths, widths and thicknesses. From the results of simulation, it can be seen that the laser spot diameter, the scanning speed, laser power and thickness of plate play dominant roles in the laser forming process. However, the bending angles αx and αy show different trends with the variation of parameters. In addition, in comparison with above four parameters, the effect of length and width of plate on the beading angle may be neglected, but their effects are significant for the bending radius R. 展开更多
关键词 laser forming temperature gradient mechanism metal plate
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部