This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear...This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.展开更多
In indoor environments and shady outdoor environments, there is little influence of short-wavelength solar radiation, so a strikingly non-uniform and asymmetric environment is not formed. In outdoor sunny environment,...In indoor environments and shady outdoor environments, there is little influence of short-wavelength solar radiation, so a strikingly non-uniform and asymmetric environment is not formed. In outdoor sunny environment, however, shaded areas occur even for the same site of the body, and a remarkable difference in skin temperature is considered to occur under the influence of the short-wavelength solar radiation. The purpose of this study is to clarify the influence of the non-uniform and asymmetric thermal radiation of short-wavelength solar radiation in outdoor environment on the division of the body surface section and the calculation of the mean skin temperature. The skin temperature of the front of the coronal surface, which was facing the sun and where the body received direct short-wavelength solar radiation, and the skin temperature of the rear of the coronal surface, which was in the shadow and did not receive direct short-wavelength solar radiation were respectively measured. The feet, upper arm, forearm, hand and lower leg, which are susceptible to short-wavelength solar radiation in a standing posture, had a noticeable difference in skin temperature between sites in the sun and in shade. The mean skin temperature of sites facing the sun was significantly higher than the mean skin temperature of those in the shade.展开更多
The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for...The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations and for isothermal and/or adiabatic temperature boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analyzed. One linear and five non-uniform temperature profiles are considered and their comparative influence on onset is discussed.展开更多
The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are ob...The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for an upper free/adiabatic and lower rigid/isothermal boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and their comparative influence on onset is discussed.展开更多
Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead load...Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.展开更多
The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct ...The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperaWa-e and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.展开更多
Line-of-sight tunable-diode-laser absorption spectroscopy(LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss–Seidel itera...Line-of-sight tunable-diode-laser absorption spectroscopy(LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss–Seidel iteration method is used to measure temperature probability distribution function(PDF) along the line-of-sight(LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and15 well-selected absorption lines are used for the simulation study. The Gauss–Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.展开更多
The present work investigates possible impact of the non-uniformity in observed land surface temperature on trend estimation, based on Climatic Research Unit (CRU) Temperature Version 4 (CRUTEM4) monthly temperatu...The present work investigates possible impact of the non-uniformity in observed land surface temperature on trend estimation, based on Climatic Research Unit (CRU) Temperature Version 4 (CRUTEM4) monthly temperature data-sets from 1900 to 2012. The CRU land temperature data exhibit remarkable non-uniformity in spatial and temporal features. The data are characterized by an uneven spatial distribution of missing records and station density, and dis-play a significant increase of available sites around 1950. Considering the impact of missing data, the trends seem to be more stable and reliable when estimated based on data with 〈 40% missing percent, compared to the data with above 40% missing percent. Mean absolute error (MAE) between data with 〈 40% missing percent and global data is only 0.011℃ (0.014℃) for 1900-50 (1951-2012). The associated trend estimated by reliable data is 0.087℃ decade^-1 (0.186℃ decade^-l) for 1900-50 (1951-2012), almost the same as the trend of the global data. However, due to non-uniform spatial distribution of missing data, the global signal seems mainly coming from the regions with good data coverage, especially for the period 1900-50. This is also confirmed by an extreme test conducted with the records in the United States and Africa. In addition, the influences of spatial and temporal non-uniform features in observation data on trend estimation are significant for the areas with poor data coverage, such as Africa, while insig-nificant for the countries with good data coverage, such as the United States.展开更多
基金supported by the Science Fund Research Grant from Kementerian Sains dan Teknologi(MOSTI)
文摘This paper investigates the effect of non-uniform temperature gradient and magnetic field on Marangoni convection in a horizontal fluid layer heated from below and cooled from above with a constant heat flux. A linear stability analysis is performed. The influence of various parameters on the convection onset is analyzed. Six non-uniform basic temperature profiles are considered, and some general conclusions about their desta- bilizing effects are presented.
文摘In indoor environments and shady outdoor environments, there is little influence of short-wavelength solar radiation, so a strikingly non-uniform and asymmetric environment is not formed. In outdoor sunny environment, however, shaded areas occur even for the same site of the body, and a remarkable difference in skin temperature is considered to occur under the influence of the short-wavelength solar radiation. The purpose of this study is to clarify the influence of the non-uniform and asymmetric thermal radiation of short-wavelength solar radiation in outdoor environment on the division of the body surface section and the calculation of the mean skin temperature. The skin temperature of the front of the coronal surface, which was facing the sun and where the body received direct short-wavelength solar radiation, and the skin temperature of the rear of the coronal surface, which was in the shadow and did not receive direct short-wavelength solar radiation were respectively measured. The feet, upper arm, forearm, hand and lower leg, which are susceptible to short-wavelength solar radiation in a standing posture, had a noticeable difference in skin temperature between sites in the sun and in shade. The mean skin temperature of sites facing the sun was significantly higher than the mean skin temperature of those in the shade.
文摘The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for free-free, rigid-free and rigid-rigid velocity boundary combinations and for isothermal and/or adiabatic temperature boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analyzed. One linear and five non-uniform temperature profiles are considered and their comparative influence on onset is discussed.
文摘The effects of electric field and non-uniform basic temperature gradient on the onset of Rayleigh-Bénard-Marangoni convection in a micropolar fluid are studied using the Galerkin technique. The eigenvalues are obtained for an upper free/adiabatic and lower rigid/isothermal boundaries. The microrotation is assumed to vanish at the boundaries. A linear stability analysis is performed. The influence of various micropolar fluid parameters and electric Rayleigh number on the onset of convection has been analysed. Six different non-uniform temperature profiles are considered and their comparative influence on onset is discussed.
基金Project supported by the National Natural Science Foundation of China (No.10272069)Shanghai Leading Academic Discipline Project (No.Y0103)
文摘Dynamical formation and growth of compressible thermal-hyperelastic Gent-Thomas cavity in a sphere composed of two inmaterials were discussed under the case of a non-uniform temperature field and the surface dead loading. The mathematical model was first presented based on the dynamical theory of finite deformations. An exact differential relation between the void radius and surface load was obtained by using the variable transformation method. By numerical computation, critical loads and cavitation growth curves were obtained for different temperatures. The influence of the temperature and material parameters of the composed sphere on the void formation and growth was considered and compared with those for static analysis. The results show that the cavity occurs stiddenly with a finite radius and its evolvement with time displays a non-linear periodic vibration and that the critical load decreases with the increase of temperature and also the dynamical critical load is lower than the static critical load under the same conditions.
基金supported by National Natural Science Foundation of China(Grant No.51375170)Open Fund of State Key Lab of Environmental Adaptability for Industrial Products of China
文摘The existing investigations on thermal comfort mostly focus on the thermal environment conditions, especially of the air-flow field and the temperature distributions in vehicle cabin. Less attention appears to direct to the thermal comfort or thermal sensation of occupants, even to the relationship between thermal conditions and thermal sensation. In this paper, a series of experiments were designed and conducted for understanding the non-uniform conditions and the occupant's thermal responses in vehicle cabin during the heating period. To accurately assess the transient temperature distribution in cabin in common daily condition, the air temperature at a number of positions is measured in a full size vehicle cabin under natural winter environment in South China by using a discrete thermocouples network. The occupant body is divided into nine segments, the skin temperature at each segment and the occupant's local thermal sensation at the head, body, upper limb and lower limb are monitored continuously. The skin temperature is observed by using a discrete thermocouples network, and the local thermal sensation is evaluated by using a seven-point thermal comfort survey questionnaire proposed by American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc(ASHRAE) Standard. The relationship between the skin temperature and the thermal sensation is discussed and regressed by statistics method. The results show that the interior air temperature is highly non-uniform over the vehicle cabin. The locations where the occupants sit have a significant effect on the occupant's thermal responses, including the skin temperature and the thermal sensation. The skin temperaWa-e and thermal sensation are quite different between body segments due to the effect of non-uniform conditions, clothing resistance, and the human thermal regulating system. A quantitative relationship between the thermal sensation and the skin temperature at each body segment of occupant in real life traffic is presented. The investigation result indicates that the skin temperature is a robust index to evaluate the thermal sensation. Applying the skin temperature to designing and controlling parameters of the heating, ventilation and air conditioning(HVAC) system may benefit the thermal comfort and reducing energy consumption.
基金Project supported by the National Natural Science Foundation of China(Grant No.61108034)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61205151)
文摘Line-of-sight tunable-diode-laser absorption spectroscopy(LOS-TDLAS) with multiple absorption lines is introduced for non-uniform temperature measurement. Temperature binning method combined with Gauss–Seidel iteration method is used to measure temperature probability distribution function(PDF) along the line-of-sight(LOS). Through 100 simulated measurements, the variation of measurement accuracy is investigated with the number of absorption lines, the number of temperature bins and the magnitude of temperature non-uniformity. A field model with 2-T temperature distribution and15 well-selected absorption lines are used for the simulation study. The Gauss–Seidel iteration method is discussed for its reliability. The investigation result about the variation of measurement accuracy with the number of temperature bins is different from the previous research results.
基金Supported by the National Natural Science Foundation of China(41490643 and 41675073)Jiangsu Provincial "333 Talents" Project+2 种基金"Six Talents Highlands" ProjectPriority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)Innovation Project of Jiangsu Province(KYLX16_0927)
文摘The present work investigates possible impact of the non-uniformity in observed land surface temperature on trend estimation, based on Climatic Research Unit (CRU) Temperature Version 4 (CRUTEM4) monthly temperature data-sets from 1900 to 2012. The CRU land temperature data exhibit remarkable non-uniformity in spatial and temporal features. The data are characterized by an uneven spatial distribution of missing records and station density, and dis-play a significant increase of available sites around 1950. Considering the impact of missing data, the trends seem to be more stable and reliable when estimated based on data with 〈 40% missing percent, compared to the data with above 40% missing percent. Mean absolute error (MAE) between data with 〈 40% missing percent and global data is only 0.011℃ (0.014℃) for 1900-50 (1951-2012). The associated trend estimated by reliable data is 0.087℃ decade^-1 (0.186℃ decade^-l) for 1900-50 (1951-2012), almost the same as the trend of the global data. However, due to non-uniform spatial distribution of missing data, the global signal seems mainly coming from the regions with good data coverage, especially for the period 1900-50. This is also confirmed by an extreme test conducted with the records in the United States and Africa. In addition, the influences of spatial and temporal non-uniform features in observation data on trend estimation are significant for the areas with poor data coverage, such as Africa, while insig-nificant for the countries with good data coverage, such as the United States.