Internal and external wall surface temperatures (Tws) in April, August and December in Kunming, a city in low latitude plateau, were investigated. Results showed that the Tws in April were of the highest among the thr...Internal and external wall surface temperatures (Tws) in April, August and December in Kunming, a city in low latitude plateau, were investigated. Results showed that the Tws in April were of the highest among the three, followed by August and December. The Tws differences among walls with different orientation were higher in April and December when the weather tends to be sunny, and lower in August with more cloudy days in the time. In April and August, Tws of E-wall was the highest, followed by S- and N-wall. But in December Tws of S-wall might be sometimes higher than E one. Diurnal range of internal Tws was usually smaller than that of the external, with also a time lag for the occurrence of its maximum and minimum. The results can serve as a basis for further research on building microclimate and urban architecture designs. It also gives suggestions for similar studies in other areas.展开更多
The temperature of bush inner surface temperature is measured by using infrared thermometer and transparent bearing,and temperature rise is measured by using thermocouple. The influence of rotating speed and axial loc...The temperature of bush inner surface temperature is measured by using infrared thermometer and transparent bearing,and temperature rise is measured by using thermocouple. The influence of rotating speed and axial location on the bush inner surface temperature is studied,and the influence of supply pressure and rotating speed on the temperature rise is analyzed. The results show the bush inner surface temperature and temperature rise of spiral oil wedge hydrodynamic bearing increase with the increase of rotation speed. In axial direction,the temperature is higher around the oil return hole. The temperature rise decreases with the increase of supply pressure. The highest temperature of bush inner surface and temperature rise are higher at higher speed,so the temperature rise is the fundamental reason which restricts the increase of rotation speed for high speed sleeve bearing.展开更多
High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and eco...High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.展开更多
Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impac...Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impact of terrain undulation and heat transfer with the surroundings along the line.Elimination of temperature iteration loop and integration of the explicit temperature equation,instead of enthalpy energy equation,into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm.Then,the inner wall temperature of gas-liquid flow was calculated by using explicit temperature equation and inner wall convective heat transfer coefficient of mixed flow which can be obtained by liquid convective heat transfer coefficient and gas convective heat transfer coefficient on the basis of liquid holdup.The temperature results of gas-liquid flow and inner wall in the case example presented both agree well with those in professional multiphase computational software OLGA.展开更多
To improve the controllability of the wall-wetting process after the fuel spray-wall impingement in internal combustion engines,the methods of laser etching,chemical etching and surface free energy modification are us...To improve the controllability of the wall-wetting process after the fuel spray-wall impingement in internal combustion engines,the methods of laser etching,chemical etching and surface free energy modification are used to prepare biomimetic structured surfaces with different wettability.The impingement processes of diesel and n-butanol sprays on the walls under different conditions are experimentally investigated.As the surface oleophilicity increases,the spreading radius of wall-impinging sprays decreases.At about 5 s after the fuel injections,the fuel spray droplets hit the walls for the first time,and the secondary breakup and rebound occur.The mixture concentrations of different fuels hitting the various walls reach the peak value.Under a higher surface temperature,the peak value of the mixture concentration is mainly related to the heat flux to the fuel droplets in different boiling regimes from the metal surfaces.The concentration of the air–fuel mixture in the near wall region increases with increasing surface oleophilicity,increasing wall temperature and decreasing ambient pressure.Compared with diesel,n-butanol presents a higher air–fuel mixture concentration in the near wall region.展开更多
2022年7月内蒙古中西部地区降水明显偏少,且呈前期偏多、后期偏少的涝—旱转折性分布特征,分析不同阶段环流分布差异和影响系统间的配置对进一步做好内蒙古汛期降水预测具有重要作用。利用内蒙古116站逐日降水量、国家气候中心130项气...2022年7月内蒙古中西部地区降水明显偏少,且呈前期偏多、后期偏少的涝—旱转折性分布特征,分析不同阶段环流分布差异和影响系统间的配置对进一步做好内蒙古汛期降水预测具有重要作用。利用内蒙古116站逐日降水量、国家气候中心130项气候指数、美国国家环境预报中心/国家大气科学研究中心(National Center for Enviromental Prediction/National Center for Atmospheric Research,NCEP/NCAR)逐日再分析资料和美国国家海洋和大气管理局(National Oceanic and Atmospheric Admin⁃istration,NOAA)逐月海表温度资料,分析2022年7月内蒙古中西部地区涝-旱转折事件的成因。结果表明:(1)2022年7月内蒙古中西部地区降水量严重偏少,为该地区1991年以来同期降水最少、气象干旱最为严重。(2)7月1—11日降水相对偏多,冷空气路径偏北且强度较弱,西太平洋副热带高压强度偏弱,位置偏北、偏西,冷暖空气在内蒙古中西部地区交绥,加之这一时段高空西风急流位置偏北,内蒙古中西部位于急流轴以南,有利于高层辐散和上升运动发展。7月12—31日降水明显偏少,环流经向度加大,冷空气活动路径偏南且强度增强,西太平洋副热带高压强度偏强且位置明显偏南,不利于水汽输送,加之高空西风急流位置偏南,内蒙古中西部位于急流轴以北,不利于高层辐散和上升运动发展;7月中旬后期至下旬高空西风急流南北向扰动偏强有利于激发东亚—西北太平洋经向遥相关波列,使得西太平洋副热带高压位置偏南从而导致降水偏少。(3)日本海至北太平洋西北部地区的海温异常是影响内蒙古中西部地区降水多寡的重要外强迫信号之一。2022年7月该海区海温异常偏高,其上空激发的气旋式环流减弱了南方暖湿水汽的经向输送,是导致内蒙古中西部降水由涝转旱的原因之一。展开更多
The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated mode...The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.展开更多
Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of th...Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of the ablated wall interaction with the discharge plasma in PPT,ablation models formulated by three different boundary conditions at the wall-plasma interface are studied.These are the two widely used high-speed evaporation models(Model-L and Model-M),and the recently developed Keida-Zaghloul model(Model-K)of the Knudsen layer that takes into account the internal degrees of freedom on the energy flux conservation.First,fundamental mechanisms of the three ablation models are clarified by comparative analysis in order to gain a comprehensive understanding of the wall-plasma interaction.Then,the applicability of different ablation models with the numerical solutions of LES-6 PPT is investigated in detail using magnetohydrodynamic(MHD)modeling.Results show that Model-L and Model-M are actually special cases of Model-K when a simplified jump conditions limited by high velocity at the vapor/plasma interface is used;A ratio of ablation rate in Model-L to that in Model-M is about 0.8at the same wall surface temperature,while it rises to 1 at different surface temperature determined by Model-L and Model-M in PPT.Even though Model-K solution requires significant computational time,it shows more accurate ablation feature for the wall-plasma interaction and possesses better computing precision of impulse bit during post-pulse which is useful for future studies of the late time ablation.展开更多
Using vegetated facade systems(VFS)as a sustainable solution for existing and new buildings and evaluating thermal performance of these sytems are not a new concept.However,there is a gap in literature about measuring...Using vegetated facade systems(VFS)as a sustainable solution for existing and new buildings and evaluating thermal performance of these sytems are not a new concept.However,there is a gap in literature about measuring thermal performance of VFS applied on an insulated wall.Also,in the research literature,there are few studies measuring thermal performance of felt type VFS in temperate climates,and data about the thermal performance of VFS during winter periods is still scarce.Thus,the aim of the present study is to measure the thermal performance of a felt type VFS applied on a thermal insulated existing wall that us located in Kocaeli,Turkey,under Csa climate conditions during heating and cooling periods.Test results indicate that the felt type VFS acts as a shading device and has a positive contribution to the thermal performance of building walls during a cooling period.In daytime when there is a high amount of solar radiation,felt type VFS decreased exterior surface temperatures of the insulated existing wall by a maximum of 24.4℃,32.2℃ and 37.2℃,in spring,summer and fall periods,respectively.Additionally,indoor air temperatures of the vegetated facade were lower than indoor air temperatures of the reference facade with the maximum difference of 1.8℃ during the cooling period.Also,test results indicate that the vegetated facade never dropped to below 0℃ while exterior surface temperatures of the reference facade dropped below 0℃ at nighttime in the winter period.Thus,it can be claimed that the felt type VFS behaves as a thermal buffer and enhances the thermal performance of the exterior wall of the existing building during heating periods at nighttime.As a conclusion,although differences between exterior surface temperatures of vegetated and reference walls were high,differences between interior surface temperatures of vegetated and reference walls were not meaningful.That is due to the fact that the existing building exterior wall assembly includes 5 cm thickness thermal insulation material which enhance the thermal performance of the brick wall.Finally,according to solar reflectance results,it can be claimed that vegetated facade systems have a positive effect on reducing urban heat island effect.展开更多
基金Key project from the Natural Science Foundation of China (59836250)
文摘Internal and external wall surface temperatures (Tws) in April, August and December in Kunming, a city in low latitude plateau, were investigated. Results showed that the Tws in April were of the highest among the three, followed by August and December. The Tws differences among walls with different orientation were higher in April and December when the weather tends to be sunny, and lower in August with more cloudy days in the time. In April and August, Tws of E-wall was the highest, followed by S- and N-wall. But in December Tws of S-wall might be sometimes higher than E one. Diurnal range of internal Tws was usually smaller than that of the external, with also a time lag for the occurrence of its maximum and minimum. The results can serve as a basis for further research on building microclimate and urban architecture designs. It also gives suggestions for similar studies in other areas.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51305242)the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents(Grant No.2013RCJJ014)
文摘The temperature of bush inner surface temperature is measured by using infrared thermometer and transparent bearing,and temperature rise is measured by using thermocouple. The influence of rotating speed and axial location on the bush inner surface temperature is studied,and the influence of supply pressure and rotating speed on the temperature rise is analyzed. The results show the bush inner surface temperature and temperature rise of spiral oil wedge hydrodynamic bearing increase with the increase of rotation speed. In axial direction,the temperature is higher around the oil return hole. The temperature rise decreases with the increase of supply pressure. The highest temperature of bush inner surface and temperature rise are higher at higher speed,so the temperature rise is the fundamental reason which restricts the increase of rotation speed for high speed sleeve bearing.
文摘High-temperature heating surface such as superheater and reheater of large-sized utility boiler all experiences a relatively severe working conditions. The failure of boiler tubes will directly impact the safe and economic operation of boiler. An on-line life monitoring model of high-temperature heating surface was set up according to the well-known L-M formula of the creep damages. The tube wall metal temperature and working stress was measured by on-line monitoring, and with this model, the real-time calculation of the life expenditure of the heating surface tube bundles were realized. Based on the technique the on-line life monitoring and management system of high-temperature heating surface was developed for a 300 MW utility boiler. An effective device was thus suggested for the implementation of the safe operation and the condition-based maintenance of utility boilers.
基金Project(2011ZX05000-026-004) supported by the National Science & Technology Specific Program of ChinaProject(2010D-5006-0604) supported by the China National Petroleum Corporation (CNPC) Innovation FoundationProject(51004167) supported by the National Natural Science Foundation of China
文摘Based on the energy equation of gas-liquid flow in pipeline,the explicit temperature drop formula for gas-liquid steady state calculation was derived.This formula took into consideration the Joule-Thomson effect,impact of terrain undulation and heat transfer with the surroundings along the line.Elimination of temperature iteration loop and integration of the explicit temperature equation,instead of enthalpy energy equation,into the conjugated hydraulic and thermal computation have been found to improve the efficiency of algorithm.Then,the inner wall temperature of gas-liquid flow was calculated by using explicit temperature equation and inner wall convective heat transfer coefficient of mixed flow which can be obtained by liquid convective heat transfer coefficient and gas convective heat transfer coefficient on the basis of liquid holdup.The temperature results of gas-liquid flow and inner wall in the case example presented both agree well with those in professional multiphase computational software OLGA.
基金the financial support from the Natural Science Foundation of Jilin Province(Project code:20220101212JC)Jilin Province Specific Project of Industrial Technology Research&Development(Project code:2020C025-2)+2 种基金Free Exploration Project of Changsha Automotive Innovation Research Institute of Jilin University(Project code:CAIRIZT20220202)2021"Interdisciplinary Integration and Innovation"Project of Jilin University(Project code:XJRCYB07)Horizon 2020 MSCA(Project code:H2020-MSCA-RISE-778104-ThermaSMART).
文摘To improve the controllability of the wall-wetting process after the fuel spray-wall impingement in internal combustion engines,the methods of laser etching,chemical etching and surface free energy modification are used to prepare biomimetic structured surfaces with different wettability.The impingement processes of diesel and n-butanol sprays on the walls under different conditions are experimentally investigated.As the surface oleophilicity increases,the spreading radius of wall-impinging sprays decreases.At about 5 s after the fuel injections,the fuel spray droplets hit the walls for the first time,and the secondary breakup and rebound occur.The mixture concentrations of different fuels hitting the various walls reach the peak value.Under a higher surface temperature,the peak value of the mixture concentration is mainly related to the heat flux to the fuel droplets in different boiling regimes from the metal surfaces.The concentration of the air–fuel mixture in the near wall region increases with increasing surface oleophilicity,increasing wall temperature and decreasing ambient pressure.Compared with diesel,n-butanol presents a higher air–fuel mixture concentration in the near wall region.
文摘2022年7月内蒙古中西部地区降水明显偏少,且呈前期偏多、后期偏少的涝—旱转折性分布特征,分析不同阶段环流分布差异和影响系统间的配置对进一步做好内蒙古汛期降水预测具有重要作用。利用内蒙古116站逐日降水量、国家气候中心130项气候指数、美国国家环境预报中心/国家大气科学研究中心(National Center for Enviromental Prediction/National Center for Atmospheric Research,NCEP/NCAR)逐日再分析资料和美国国家海洋和大气管理局(National Oceanic and Atmospheric Admin⁃istration,NOAA)逐月海表温度资料,分析2022年7月内蒙古中西部地区涝-旱转折事件的成因。结果表明:(1)2022年7月内蒙古中西部地区降水量严重偏少,为该地区1991年以来同期降水最少、气象干旱最为严重。(2)7月1—11日降水相对偏多,冷空气路径偏北且强度较弱,西太平洋副热带高压强度偏弱,位置偏北、偏西,冷暖空气在内蒙古中西部地区交绥,加之这一时段高空西风急流位置偏北,内蒙古中西部位于急流轴以南,有利于高层辐散和上升运动发展。7月12—31日降水明显偏少,环流经向度加大,冷空气活动路径偏南且强度增强,西太平洋副热带高压强度偏强且位置明显偏南,不利于水汽输送,加之高空西风急流位置偏南,内蒙古中西部位于急流轴以北,不利于高层辐散和上升运动发展;7月中旬后期至下旬高空西风急流南北向扰动偏强有利于激发东亚—西北太平洋经向遥相关波列,使得西太平洋副热带高压位置偏南从而导致降水偏少。(3)日本海至北太平洋西北部地区的海温异常是影响内蒙古中西部地区降水多寡的重要外强迫信号之一。2022年7月该海区海温异常偏高,其上空激发的气旋式环流减弱了南方暖湿水汽的经向输送,是导致内蒙古中西部降水由涝转旱的原因之一。
基金supported by the Special Foundation for State Major Basic Research Program of China(Grant No.2011ZX04002-101)
文摘The heat conduction equation is solved in this paper under specific boundary conditions.The coefficients of the obtained distribution equation are simplified with the piecewise integral method.Then the associated model for the cylindrical thermal equipment is established.The relationship of the surface temperatures,the material properties and the inner wall state of the cylindrical thermal equipment is described in the associated model.This model is applied to the inner wall running state monitoring of the main pipe.A multi-channel distributed optical fiber temperature measurement system is designed to acquire the external surface temperatures of the main pipe.Then the associated model can be used to analyze the surface temperature data of the main pipe.The location and the physical dimension of the inner wall defect can be got.Therefore,the inner wall defect monitoring of the main pipe can be realized.The feasibility of this method is verified by experiment.This method also provides a theoretical basis for the real-time monitoring of the main pipe’s internal state.
基金Project supported by Ph.D.Programs Foundation of Ministry of Education of China(20121101120004)Basic Research Foundation of Beijing Institute of Technology(20120142015)
文摘Ablation excited by current pulses is a very critical physical process in pulse plasma thrusters(PPT).Its effects on wall-plasma interaction directly determine the PPT performances.In order to reveal the process of the ablated wall interaction with the discharge plasma in PPT,ablation models formulated by three different boundary conditions at the wall-plasma interface are studied.These are the two widely used high-speed evaporation models(Model-L and Model-M),and the recently developed Keida-Zaghloul model(Model-K)of the Knudsen layer that takes into account the internal degrees of freedom on the energy flux conservation.First,fundamental mechanisms of the three ablation models are clarified by comparative analysis in order to gain a comprehensive understanding of the wall-plasma interaction.Then,the applicability of different ablation models with the numerical solutions of LES-6 PPT is investigated in detail using magnetohydrodynamic(MHD)modeling.Results show that Model-L and Model-M are actually special cases of Model-K when a simplified jump conditions limited by high velocity at the vapor/plasma interface is used;A ratio of ablation rate in Model-L to that in Model-M is about 0.8at the same wall surface temperature,while it rises to 1 at different surface temperature determined by Model-L and Model-M in PPT.Even though Model-K solution requires significant computational time,it shows more accurate ablation feature for the wall-plasma interaction and possesses better computing precision of impulse bit during post-pulse which is useful for future studies of the late time ablation.
文摘Using vegetated facade systems(VFS)as a sustainable solution for existing and new buildings and evaluating thermal performance of these sytems are not a new concept.However,there is a gap in literature about measuring thermal performance of VFS applied on an insulated wall.Also,in the research literature,there are few studies measuring thermal performance of felt type VFS in temperate climates,and data about the thermal performance of VFS during winter periods is still scarce.Thus,the aim of the present study is to measure the thermal performance of a felt type VFS applied on a thermal insulated existing wall that us located in Kocaeli,Turkey,under Csa climate conditions during heating and cooling periods.Test results indicate that the felt type VFS acts as a shading device and has a positive contribution to the thermal performance of building walls during a cooling period.In daytime when there is a high amount of solar radiation,felt type VFS decreased exterior surface temperatures of the insulated existing wall by a maximum of 24.4℃,32.2℃ and 37.2℃,in spring,summer and fall periods,respectively.Additionally,indoor air temperatures of the vegetated facade were lower than indoor air temperatures of the reference facade with the maximum difference of 1.8℃ during the cooling period.Also,test results indicate that the vegetated facade never dropped to below 0℃ while exterior surface temperatures of the reference facade dropped below 0℃ at nighttime in the winter period.Thus,it can be claimed that the felt type VFS behaves as a thermal buffer and enhances the thermal performance of the exterior wall of the existing building during heating periods at nighttime.As a conclusion,although differences between exterior surface temperatures of vegetated and reference walls were high,differences between interior surface temperatures of vegetated and reference walls were not meaningful.That is due to the fact that the existing building exterior wall assembly includes 5 cm thickness thermal insulation material which enhance the thermal performance of the brick wall.Finally,according to solar reflectance results,it can be claimed that vegetated facade systems have a positive effect on reducing urban heat island effect.