Probe molecule Eu(DBM)3 phen is made up of europium oxide(EuO),dibenzoylmethane(DBM) and1,10-phenanthroline(phen). The temperature sensitive paint(TSP) was compounded by the polymerization of the probe molecule, methy...Probe molecule Eu(DBM)3 phen is made up of europium oxide(EuO),dibenzoylmethane(DBM) and1,10-phenanthroline(phen). The temperature sensitive paint(TSP) was compounded by the polymerization of the probe molecule, methyl methacrylate(MMA) and the initiator of benzoyl peroxide(BPO).The structure, morphology, luminescence property of probe molecule and the temperature quenching property of the temperature sensitive paint(TSP) were characterized by infrared spectrometer, UV-vis spectrometer, scanning electron microscopy and fluorescence spectrometer respectively. The infrared spectrum and UV-vis spectra show that Eu and DBM form six membered rings, and Eu-O coordinate bonds form. The nanocrystals are in sphere-like morphology with an average size of approximately100 nm. Fluorescence spectra present that the performance of temperature quenching is excellent,what’s more, TSP sample has different temperature sensitivity in various temperature scope. Particularly,under excitation of 286 nm, TSP has a highest temperature sensitivity between 50 and 60 ℃, and the strongest fluorescence emission reaches a peak(615 nm). It indicated that probe molecule(Eu(DBM)phen) has strong luminescent intensity and the temperature quenching properties of Eu(DBM)phen/PMMA is good.展开更多
The thermal quenching behaviors of the temperature sensitivity paints (TSP) composed of europium(III) thenoyltrifluoroacetonate (EuTTA) and Eu-phenanthrene complex (Eu-2) in polystyrene (PS), polymethylmetha...The thermal quenching behaviors of the temperature sensitivity paints (TSP) composed of europium(III) thenoyltrifluoroacetonate (EuTTA) and Eu-phenanthrene complex (Eu-2) in polystyrene (PS), polymethylmethacrylate (PMMA) and epoxy resin (EP) were investigated. It is found that both the emission intensity and temperature sensitivity were not only affected by the luminescence probes, but also by the polymer matrix. The interaction between probes and matrix results in the alteration of both the non-radiation decay rate and the activation energy of the non-radiative process for the thermal quenching process, i.e. larger activation energy of the non-radiative process shows higher temperature sensitivity and less emission intensity. Therefore, it was confirmed that the temperature sensitivity and luminescent intensity of TSP depended not only on the luminescence probes but also on the polymer matrix.展开更多
In order to apply the air fin successfully and ensure the maneuverability of hypersonic vehicle, a key problem to be studied urgently is the heat flux brought by the fin mounting gap.The appearance of mounting gap and...In order to apply the air fin successfully and ensure the maneuverability of hypersonic vehicle, a key problem to be studied urgently is the heat flux brought by the fin mounting gap.The appearance of mounting gap and fin shaft can induce many complex flow structures which need more attentions to be investigated. Under Ma 6, Nano-tracer-based Planar Laser Scattering(NPLS)and Temperature Sensitive Paints(TSP) were applied to visualize and measure transient flow structures and heat flux distribution of a swept fin-induced flow field with different height mounting gaps. Complementarily, Reynolds-averaged N-S equations were solved with k-x SST turbulent model. The heat flux distribution results of numerical simulation and TSP observed the change of high heat flux region with different mounting gap, both in position and magnitude. The streamlines based on Computational Fluid Dynamics(CFD) and flow visualization results obtained by NPLS revealed the cause of high heat flux region. The high heat flux region in this flow field is mainly related to the reattachment of vortex and flow stagnation. The increase of gap height can lead to stronger gap overflow and shaft-induced horseshoe vortex, which are source of the high heat flux around the fin. The case with the highest mounting gap(4 mm) en-counters the most severe aerodynamic heating, both on the surface of fin and plate. Thus, under the premise of ensuring the flexibility of the fin, the gap should be set as small as possible.展开更多
基金supported by the Pre-Research Fund Project(BQ0302)
文摘Probe molecule Eu(DBM)3 phen is made up of europium oxide(EuO),dibenzoylmethane(DBM) and1,10-phenanthroline(phen). The temperature sensitive paint(TSP) was compounded by the polymerization of the probe molecule, methyl methacrylate(MMA) and the initiator of benzoyl peroxide(BPO).The structure, morphology, luminescence property of probe molecule and the temperature quenching property of the temperature sensitive paint(TSP) were characterized by infrared spectrometer, UV-vis spectrometer, scanning electron microscopy and fluorescence spectrometer respectively. The infrared spectrum and UV-vis spectra show that Eu and DBM form six membered rings, and Eu-O coordinate bonds form. The nanocrystals are in sphere-like morphology with an average size of approximately100 nm. Fluorescence spectra present that the performance of temperature quenching is excellent,what’s more, TSP sample has different temperature sensitivity in various temperature scope. Particularly,under excitation of 286 nm, TSP has a highest temperature sensitivity between 50 and 60 ℃, and the strongest fluorescence emission reaches a peak(615 nm). It indicated that probe molecule(Eu(DBM)phen) has strong luminescent intensity and the temperature quenching properties of Eu(DBM)phen/PMMA is good.
基金financially supported by the Hubei Province Youth Chenguang Program of Science and Technology(No.2014.5)Applied Basic Research Programs of Wuhan(No.2015010101010018)+2 种基金Soft Science Research Program of Wuhan(No.2015040606010250)Educational Commission of Hubei Province of China(No.D20151505)Graduate Innovative Fund of Wuhan Institute of Technology(No.CX2013088)
文摘The thermal quenching behaviors of the temperature sensitivity paints (TSP) composed of europium(III) thenoyltrifluoroacetonate (EuTTA) and Eu-phenanthrene complex (Eu-2) in polystyrene (PS), polymethylmethacrylate (PMMA) and epoxy resin (EP) were investigated. It is found that both the emission intensity and temperature sensitivity were not only affected by the luminescence probes, but also by the polymer matrix. The interaction between probes and matrix results in the alteration of both the non-radiation decay rate and the activation energy of the non-radiative process for the thermal quenching process, i.e. larger activation energy of the non-radiative process shows higher temperature sensitivity and less emission intensity. Therefore, it was confirmed that the temperature sensitivity and luminescent intensity of TSP depended not only on the luminescence probes but also on the polymer matrix.
基金supported by the National Key Technology Research and Development Program of China (No. 2019YFA0405300)the National Project for Research and Development of Major Scientific Instruments of China (No. 11527802)the National Natural Science Foundation of China (No. 11832018)。
文摘In order to apply the air fin successfully and ensure the maneuverability of hypersonic vehicle, a key problem to be studied urgently is the heat flux brought by the fin mounting gap.The appearance of mounting gap and fin shaft can induce many complex flow structures which need more attentions to be investigated. Under Ma 6, Nano-tracer-based Planar Laser Scattering(NPLS)and Temperature Sensitive Paints(TSP) were applied to visualize and measure transient flow structures and heat flux distribution of a swept fin-induced flow field with different height mounting gaps. Complementarily, Reynolds-averaged N-S equations were solved with k-x SST turbulent model. The heat flux distribution results of numerical simulation and TSP observed the change of high heat flux region with different mounting gap, both in position and magnitude. The streamlines based on Computational Fluid Dynamics(CFD) and flow visualization results obtained by NPLS revealed the cause of high heat flux region. The high heat flux region in this flow field is mainly related to the reattachment of vortex and flow stagnation. The increase of gap height can lead to stronger gap overflow and shaft-induced horseshoe vortex, which are source of the high heat flux around the fin. The case with the highest mounting gap(4 mm) en-counters the most severe aerodynamic heating, both on the surface of fin and plate. Thus, under the premise of ensuring the flexibility of the fin, the gap should be set as small as possible.