in order to achieve increased layer thickness, and wearing resistance, enhanced ion implantation with nitrogen has been carried out at temperatures of 100, 200, 400, and 600℃ with a dose of 4x 1018 ions' cm-2. U...in order to achieve increased layer thickness, and wearing resistance, enhanced ion implantation with nitrogen has been carried out at temperatures of 100, 200, 400, and 600℃ with a dose of 4x 1018 ions' cm-2. Using the Plasma Source ion Implantation (PSII) device, specimens of Ti6Al4V alloy were implanted at elevated temperatures, using the ion flux as the heating source. Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), micro-hardness measurements and pin-on-disk wearing tester were utilized to evaluate the surface property improvements. The thickness of the implanted layer increased by about an order of magnitude when the temperature was elevated from 100 to 600℃. Higher surface hardness and wearing resistance was also obtained in implantation under higher temperature. XRD image showed the presence of titanium nitrides on the implanted surface.展开更多
Using the effect of the temperature on the capacitance–voltage(C–V)and conductance–voltage(G/ω–V)characteristics of PtSi/n-Si(111)Schottky diodes the profile of apparent doping concentrationthe potential di...Using the effect of the temperature on the capacitance–voltage(C–V)and conductance–voltage(G/ω–V)characteristics of PtSi/n-Si(111)Schottky diodes the profile of apparent doping concentrationthe potential difference between the Fermi energy level and the bottom of the conduction bandapparent barrier heightseries resistanceand the interface state density Nss have been investigated.From the temperature dependence of(C–V)it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K.The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells,which formed due to the process of Pt Si formation on semiconductor and the presence of hexagonal voids of Si(111).展开更多
基金This item was supported by the Defense Science Foundation with Grant No.98JS50.3.3 HZ5801.
文摘in order to achieve increased layer thickness, and wearing resistance, enhanced ion implantation with nitrogen has been carried out at temperatures of 100, 200, 400, and 600℃ with a dose of 4x 1018 ions' cm-2. Using the Plasma Source ion Implantation (PSII) device, specimens of Ti6Al4V alloy were implanted at elevated temperatures, using the ion flux as the heating source. Auger Electron Spectroscopy (AES), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), micro-hardness measurements and pin-on-disk wearing tester were utilized to evaluate the surface property improvements. The thickness of the implanted layer increased by about an order of magnitude when the temperature was elevated from 100 to 600℃. Higher surface hardness and wearing resistance was also obtained in implantation under higher temperature. XRD image showed the presence of titanium nitrides on the implanted surface.
文摘Using the effect of the temperature on the capacitance–voltage(C–V)and conductance–voltage(G/ω–V)characteristics of PtSi/n-Si(111)Schottky diodes the profile of apparent doping concentrationthe potential difference between the Fermi energy level and the bottom of the conduction bandapparent barrier heightseries resistanceand the interface state density Nss have been investigated.From the temperature dependence of(C–V)it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79–360 K.The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells,which formed due to the process of Pt Si formation on semiconductor and the presence of hexagonal voids of Si(111).