In reptiles,such as the red-eared slider turtle(Trachemys scripta elegans),gonadal sex determination is highly dependent on the environmental temperature during embryonic stages.This complex process,which leads to dif...In reptiles,such as the red-eared slider turtle(Trachemys scripta elegans),gonadal sex determination is highly dependent on the environmental temperature during embryonic stages.This complex process,which leads to differentiation into either testes or ovaries,is governed by the finely tuned expression of upstream genes,notably the testis-promoting gene Dmrt1 and the ovary-promoting gene Foxl2.Recent studies have identified epigenetic regulation as a crucial factor in testis development,with the H3K27me3 demethylase KDM6B being essential for Dmrt1 expression in T.s.elegans.However,whether KDM6B alone can induce testicular differentiation remains unclear.In this study,we found that overexpression of Kdm6b in T.s.elegans embryos induced the male development pathway,accompanied by a rapid increase in the gonadal expression of Dmrt1 at 31°C,a temperature typically resulting in female development.Notably,this sex reversal could be entirely rescued by Dmrt1 knockdown.These findings demonstrate that Kdm6b is sufficient for commitment to the male pathway,underscoring its role as a critical epigenetic regulator in the sex determination of the red-eared slider turtle.展开更多
Tin halide perovskites recently have attracted extensive research attention due to their similar electronic and band structures but non-toxicity compared with their lead analogues. In this work, we prepare high-qualit...Tin halide perovskites recently have attracted extensive research attention due to their similar electronic and band structures but non-toxicity compared with their lead analogues. In this work, we prepare high-quality CsSnX_(3)(X=Br,I) microplates with lateral sizes of around 1–4 μm by chemical vapor deposition and investigate their low-temperature photoluminescence(PL) properties. A remarkable splitting of PL peaks of the CsSnBr_(3)microplate is observed at low temperatures. Besides the possible structural phase transition at below 70 K, the multi-peak fittings using Gauss functions and the power-dependent saturation phenomenon suggest that the PL could also be influenced by the conversion from the emission of bound excitons into free excitons. With the increase of temperature, the peak position shows a blueshift tendency for CsSnI_(3), which is governed by thermal expansion. However, the peak position of the CsSnBr3microplate exhibits a transition from redshift to blueshift at ~160 K. The full width at half maximum of CsSnX_(3)broadens with increasing temperature, and the fitting results imply that longitudinal optical phonons dominate the electron–phonon coupling and the coupling strength is much more robust in CsSnBr3than in CsSnI_(3). The PL intensity of CsSnX_(3)microplates is suppressed due to the enhanced non-radiative relaxation and exciton dissociation competing with radiative recombination. According to the Arrhenius law, the exciton binding energy of CsSnBr_(3)is ~38.4 meV, slightly smaller than that of CsSnI_(3).展开更多
The shot-range interaction and the atomic anharmonic vibration are both considered, and then the analytic functions of the Debye temperature, the specific capacity and the thermal conductivity of graphene with the tem...The shot-range interaction and the atomic anharmonic vibration are both considered, and then the analytic functions of the Debye temperature, the specific capacity and the thermal conductivity of graphene with the temperature are obtained. The influence of anharmonic vibration on these thermal physical properties is also investigated. Some theoretical results are given. If only the harmonic approximation is considered, the Debye temperature of the graphene is unrelated to the temperature. If the anharmonic terms are considered, it increases slowly with the increasing temperature. The molar heat capacity of the graphene increases nonlinearly with the increasing temperature. The mean free path of phonons and the thermal conductivity of the graphene decrease nonlinearly with the increasing temperature. The relative changes of the Debye temperature, the specific heat capacity and the thermal conductivity caused by the anharmonic terms increase with the increasing temperature. The anharmonic effect of atomic vibration becomes more significant under higher temperature.展开更多
Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and ab...Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was-140 K. The films' exciton binding energy was 77.6 ± 10.9 meV and the energy of optical phonons was 38.8 ± 2.5 meV. These results suggest that perovskite CH3NH3Pb I(3-x)Clx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.展开更多
This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transform...This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transformation(DTM) and finite difference(FDM) methods is utilized to theoretically study the present problem.DTM and FDM are applied to the time and space domains of the problem,respectively.The accuracy of this method solution is checked against the numerical solution.Then,the effects of some applicable parameters were studied comparatively.Since a broad range of governing parameters are investigated,the results could be useful in a number of industrial and engineering applications.展开更多
Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable st...Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable stability. Furthermore, a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs. ?2009 Yu Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
An exact solution for simply-supported laminated beams with material properties variable with temperature under a combination of uniform thermo-load and mechanical loads was investigated,based on the two-dimensional(2...An exact solution for simply-supported laminated beams with material properties variable with temperature under a combination of uniform thermo-load and mechanical loads was investigated,based on the two-dimensional(2-D)thermo-elasticity theory.Firstly,the beam was divided into a series of layers with uniform material properties along the interfaces of the beam.The uniform thermo-load acted on each layer was transformed into a combination of the normal surface forces acted at the two ends and the transverse thermo-load.Secondly,the state space method was employed to obtain the general solutions of displacements and stresses in an arbitrary layer.Thirdly,based on the interfacial continuity conditions between adjacent layers,the relations of displacement and stress components between the top and bottom layers of the beam were recursively derived by use of the transfer-matrix method.The unknowns in the solutions can be solved by the mechanical loads acted on the top and bottom surfaces.The convergence of the present solutions was checked.The comparative study of the present solutions with the Timoshenko’s solutions and the finite element(FE)solutions was carried out.The effects of material properties variable with temperature on the thermo-elastic behavior of laminated beams were discussed in detail.展开更多
We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance ...We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics.There are two obvious transition platforms within the critical temperature regimes for the experimental conductance data,which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gm peak in Vg1 and valley in Vg2. The crossover temperatures of the electron hopping behaviors are analytically determined by the temperature-dependent conductance at the gate voltages Vg1 and Vg2. This finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.展开更多
Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is a...Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [12], is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case by Ratts and Rant [14].展开更多
A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of Ga...A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of GaN/Si- NPA is measured and the PL mechanism is analyzed. It is found that the PL spectrum is basically composed of two narrow ultraviolet peaks and a broad blue peak, corresponding to the near band-edge emission of GaN and its phonon replicas, and the emission from Si-NPA. No GaN defect-related PL is observed in the as-prepared GaN/Si-NPA. Our experiments prove that Si-NPA might be an ideal substrate for preparing high-quality Si-based GaN nanomaterials or nanodeviees.展开更多
The effects of irradiation of 1.0 MeV electrons on the n+-p GaAs middle cell of GalnP/GaAs/Ge triple-junction solar cells are investigated by temperature-dependent photoluminescence (PL) measurements in the 10-300K...The effects of irradiation of 1.0 MeV electrons on the n+-p GaAs middle cell of GalnP/GaAs/Ge triple-junction solar cells are investigated by temperature-dependent photoluminescence (PL) measurements in the 10-300K temperature range. The appearance of thermal quenching of the PL intensity with increasing temperature confirms the presence of a nonradiative recombination center in the cell after the electron irradiation, and the thermal activation energy of the center is determined using the Arrhenius plot of the PL intensity. Furthermore, by comparing the thermal activation and the ionization energies of the defects, the nonradiative recombination center in the n+ p GaAs middle cell acting as a primary defect is identified as the E5 electron trap located at Ec - 0.96 eV.展开更多
Temperature-dependent sex determination(TSD) is a type of environmental sex determination in which the sex of the embryos depends on the ambient temperature; however,the molecular mechanisms governing this process r...Temperature-dependent sex determination(TSD) is a type of environmental sex determination in which the sex of the embryos depends on the ambient temperature; however,the molecular mechanisms governing this process remain unknown.Aromatase,encoded by the cyp19a1 gene,which converts androgens into estrogens in animals,was considered to be the key gene for TSD.In this study,the 5'-flanking region of the cyp19a1 gene in Reeves' turtle(Mauremys reevesii) was cloned,and the promoter region was identified using the luciferase reporter assay.Then the eggs of Reeves' turtle were incubated at different temperatures(26°C: male-biased temperature; 29°C: non-sex-biased temperature and 32°C: female-biased temperature).During the thermosensitive period,the adrenal kidney gonad complexes(AKG) were sampled.DNA methylation analysis of the AKG samples showed that the promoter region of the cyp19a1 gene was significantly de-methylated in the female-biased temperature regime(P<0.01).Quantitative analysis of the cyp19a1 gene and estrogen by q PCR and Elisa assay showed that the expression level of the cyp19a1 gene and estrogen content were both upregulated significantly at the female-biased temperature(P<0.01).These results indicated that the de-methylation response of the cyp19a1 gene to incubation temperature,especially at the female-biased temperature,could lead to temperature-specific expression of aromatase and increased estrogen levels,which may further determine gonadal development in Reeves' turtle.These findings provide insights into the genetic mechanisms underlying TSD.展开更多
We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method w...We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method with symbolic computation, we obtain the exact analytical thermal traveling wave solution, which describes the non-uniform temperature distribution inside the bodies. The found exact solution is used to investigate the temperature distribution in the tissues. It is found that the surrounding medium with higher temperature does not necessarily imply that the tissue will quickly (after a short duration of heating process) reach the desired temperature. It is also found that increased perfusion causes a decline in local temperature.展开更多
Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended g...Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues.展开更多
The initial boundary value problem of the one-dimensional magneto-hydrodynamics system, when the viscosity, thermal conductivity, and magnetic diffusion coefficients are general smooth functions of temperature, is con...The initial boundary value problem of the one-dimensional magneto-hydrodynamics system, when the viscosity, thermal conductivity, and magnetic diffusion coefficients are general smooth functions of temperature, is considered in this article. A unique global classical solution is shown to exist uniquely and converge to the constant state as the time tends to infinity under certain assumptions on the initial data and the adiabatic exponent γ. The initial data can be large if γ is sufficiently close to 1.展开更多
In this study, right-handed dicinnamate isosorbide was synthesized via the esterification reaction betweefi optically active isosorbide and cinnamate. The chiral dopant was characterized by FT-IR, ^1H NMR, elemental a...In this study, right-handed dicinnamate isosorbide was synthesized via the esterification reaction betweefi optically active isosorbide and cinnamate. The chiral dopant was characterized by FT-IR, ^1H NMR, elemental analysis, SEM, UV absorption spectrum. After dissolving in a nematic liquid crystal mixture, the chiral dopant exhibited a temperature-dependent solubility in the chiral nematic liquid crystal mixture. Meanwhile, a relatively high value of helical twisting power of the polymerizable chiral dopant was determined. The results show that the chiral dopant has great potential in achieving a polymer stabilized chiral nematic liquid crystal film with a broad-band selective reflection. C 2009 Huai Yang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
The influence of temperature-dependent properties on temperature response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loading and high temperature gradient en...The influence of temperature-dependent properties on temperature response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loading and high temperature gradient environment is studied. The thermal conductivity of the material is considered to be dependent on the temperature. In this paper, the temperature response of the material is calculated using a nonlinear finite element method. Emphasis is placed on the influence of temperatue-dependent properties on the thermal response and insulation property of the material render the different graded compositional distributions and different heat flux magnitudes. Through the analysis, it is suggested that the influence of temperature-dependent properties can not be neglected in the temperature response analysis and the optimum design process of the material must be based on the temperature-dependent temperature analysis theory.展开更多
Colloidal ZnAgInSe(ZAISe) quantum dots(QDs) with different particle sizes were obtained by accommodating the reaction time. In the previous research, photoluminescence(PL) of ZAISe QDs only could be tuned by cha...Colloidal ZnAgInSe(ZAISe) quantum dots(QDs) with different particle sizes were obtained by accommodating the reaction time. In the previous research, photoluminescence(PL) of ZAISe QDs only could be tuned by changing the composition. In this work the size-tunable photoluminescence was observed successfully. The red shift in the photoluminescence spectra was caused by the quantum confinement effect. The time-resolved photoluminescence indicated that the luminescence mechanisms of the ZAISe QDs were contributed by three recombination processes. Furthermore, the temperature-dependent PL spectra were investigated. We verified the regular change of temperature-dependent PL intensity, peak energy, and the emission linewidth of broadening for ZAISe QDs. According to these fitting data, the activation energy(?E) of ZAISe QDs with different nanocrystal sizes was obtained and the stability of luminescence was discussed.展开更多
The effect of temperature on the characteristics of gallium nitride (GaN) Schottky barrier diodes (SBDs) with TiN and Ni anodes is evaluated. With increasing the temperature from 25 to 175℃, reduction of the turn-on ...The effect of temperature on the characteristics of gallium nitride (GaN) Schottky barrier diodes (SBDs) with TiN and Ni anodes is evaluated. With increasing the temperature from 25 to 175℃, reduction of the turn-on voltage and increase of the leakage current are observed for both GaN SBDs with TiN and Ni anodes. The performance after thermal treatment shows much better stability for SBDs with Ti N anode, while those with Ni anode change due to more interface states. It is found that the leakage currents of the GaN SBDs with TiN anode are in accord with the thermionic emission model whereas those of the GaN SBDs with Ni anode are much higher than the model. The Silvaco TCAD simulation results show that phonon-assisted tunneling caused by interface states may lead to the instability of electrical properties after thermal treatment, which dominates the leakage currents for GaN SBDs with Ni anode. Compared with GaN SBDs with Ni anode, GaN SBDs with TiN anode are beneficial to the application in microwave power rectification fields due to lower turn-on voltage and better thermal stability.展开更多
The viscosity of a substance or material is intensely influenced by the temperature,especially in the field of lubricant engineering where the changeable temperature is well executed.In this paper,the problem of tempe...The viscosity of a substance or material is intensely influenced by the temperature,especially in the field of lubricant engineering where the changeable temperature is well executed.In this paper,the problem of temperature-dependent viscosity on mixed convection flow of Eyring Powell fluid was studied together with Newtonian heating thermal boundary condition.The flow was assumed to move over a vertical stretching sheet.The model of the problem,which is in partial differential equations,was first transformed to ordinary differential equations using appropriate transformations.This approach was considered to reduce the complexity of the equations.Then,the transformed equations were solved using the Keller box method under the finite difference scheme approach.The validation process of the results was performed,and it was found to be in an excellent agreement.The results on the present computation are shown in tabular form and also graphical illustration.The major finding was observed where the skin friction and Nusselt number were boosted in the strong viscosity.展开更多
基金supported by the National Natural Science Foundation of China(32325049,U22A20529,32303000)Zhejiang Provincial Natural Science Foundation(LQ24C190009)+1 种基金Ningbo Natural Science Foundation(2022J192)Zhejiang Provincial Top Key Discipline of Biological Engineering(1741000592)。
文摘In reptiles,such as the red-eared slider turtle(Trachemys scripta elegans),gonadal sex determination is highly dependent on the environmental temperature during embryonic stages.This complex process,which leads to differentiation into either testes or ovaries,is governed by the finely tuned expression of upstream genes,notably the testis-promoting gene Dmrt1 and the ovary-promoting gene Foxl2.Recent studies have identified epigenetic regulation as a crucial factor in testis development,with the H3K27me3 demethylase KDM6B being essential for Dmrt1 expression in T.s.elegans.However,whether KDM6B alone can induce testicular differentiation remains unclear.In this study,we found that overexpression of Kdm6b in T.s.elegans embryos induced the male development pathway,accompanied by a rapid increase in the gonadal expression of Dmrt1 at 31°C,a temperature typically resulting in female development.Notably,this sex reversal could be entirely rescued by Dmrt1 knockdown.These findings demonstrate that Kdm6b is sufficient for commitment to the male pathway,underscoring its role as a critical epigenetic regulator in the sex determination of the red-eared slider turtle.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 11974279, 12074311, 12004310, and 12261141662)。
文摘Tin halide perovskites recently have attracted extensive research attention due to their similar electronic and band structures but non-toxicity compared with their lead analogues. In this work, we prepare high-quality CsSnX_(3)(X=Br,I) microplates with lateral sizes of around 1–4 μm by chemical vapor deposition and investigate their low-temperature photoluminescence(PL) properties. A remarkable splitting of PL peaks of the CsSnBr_(3)microplate is observed at low temperatures. Besides the possible structural phase transition at below 70 K, the multi-peak fittings using Gauss functions and the power-dependent saturation phenomenon suggest that the PL could also be influenced by the conversion from the emission of bound excitons into free excitons. With the increase of temperature, the peak position shows a blueshift tendency for CsSnI_(3), which is governed by thermal expansion. However, the peak position of the CsSnBr3microplate exhibits a transition from redshift to blueshift at ~160 K. The full width at half maximum of CsSnX_(3)broadens with increasing temperature, and the fitting results imply that longitudinal optical phonons dominate the electron–phonon coupling and the coupling strength is much more robust in CsSnBr3than in CsSnI_(3). The PL intensity of CsSnX_(3)microplates is suppressed due to the enhanced non-radiative relaxation and exciton dissociation competing with radiative recombination. According to the Arrhenius law, the exciton binding energy of CsSnBr_(3)is ~38.4 meV, slightly smaller than that of CsSnI_(3).
基金Supported by the National Natural Science Foundation of China under Grant No 11574253the Scientific and Technological Research Program of Chongqing Municipal Education Commission under Grant Nos KJ1601111 and KJ1601118the Basic and Frontier Research Projects of Chongqing under Grant No cstc2015jcyjA40054
文摘The shot-range interaction and the atomic anharmonic vibration are both considered, and then the analytic functions of the Debye temperature, the specific capacity and the thermal conductivity of graphene with the temperature are obtained. The influence of anharmonic vibration on these thermal physical properties is also investigated. Some theoretical results are given. If only the harmonic approximation is considered, the Debye temperature of the graphene is unrelated to the temperature. If the anharmonic terms are considered, it increases slowly with the increasing temperature. The molar heat capacity of the graphene increases nonlinearly with the increasing temperature. The mean free path of phonons and the thermal conductivity of the graphene decrease nonlinearly with the increasing temperature. The relative changes of the Debye temperature, the specific heat capacity and the thermal conductivity caused by the anharmonic terms increase with the increasing temperature. The anharmonic effect of atomic vibration becomes more significant under higher temperature.
基金supported by the International Science and Technology Cooperation Program of Science and Technology Bureau of Changchun City,China(Grant No.12ZX68)
文摘Temperature-dependent photoluminescence characteristics of organic-inorganic halide perovskite CH3NH3Pb I3-xClx films prepared using a two-step method on ZnO/FTO substrates were investigated. Surface morphology and absorption characteristics of the films were also studied. Scanning electron microscopy revealed large crystals and substrate coverage. The orthorhombic-to-tetragonal phase transition temperature was-140 K. The films' exciton binding energy was 77.6 ± 10.9 meV and the energy of optical phonons was 38.8 ± 2.5 meV. These results suggest that perovskite CH3NH3Pb I(3-x)Clx films have excellent optoelectronic characteristics which further suggests their potential usage in perovskitebased optoelectronic devices.
文摘This work focuses on transient thermal behavior of radial fins of rectangular,triangular and hyperbolic profiles with temperature-dependent properties.A hybrid numerical algorithm which combines differential transformation(DTM) and finite difference(FDM) methods is utilized to theoretically study the present problem.DTM and FDM are applied to the time and space domains of the problem,respectively.The accuracy of this method solution is checked against the numerical solution.Then,the effects of some applicable parameters were studied comparatively.Since a broad range of governing parameters are investigated,the results could be useful in a number of industrial and engineering applications.
基金supported by National Natural Science Foundation of China(Nos.60571031,60501009 and 90406023)National Basic Research Program of China(Nos.2006CB933206 and 2006CB705602).
文摘Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable stability. Furthermore, a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs. ?2009 Yu Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金Project(2012CB026205)supported by the National Basic Research Program of ChinaProjects(51608264,51778289)supported by the National Natural Science Foundation of ChinaProject(2014Y01)supported by the Transportation Science and Technology Project of Jiangsu Province,China
文摘An exact solution for simply-supported laminated beams with material properties variable with temperature under a combination of uniform thermo-load and mechanical loads was investigated,based on the two-dimensional(2-D)thermo-elasticity theory.Firstly,the beam was divided into a series of layers with uniform material properties along the interfaces of the beam.The uniform thermo-load acted on each layer was transformed into a combination of the normal surface forces acted at the two ends and the transverse thermo-load.Secondly,the state space method was employed to obtain the general solutions of displacements and stresses in an arbitrary layer.Thirdly,based on the interfacial continuity conditions between adjacent layers,the relations of displacement and stress components between the top and bottom layers of the beam were recursively derived by use of the transfer-matrix method.The unknowns in the solutions can be solved by the mechanical loads acted on the top and bottom surfaces.The convergence of the present solutions was checked.The comparative study of the present solutions with the Timoshenko’s solutions and the finite element(FE)solutions was carried out.The effects of material properties variable with temperature on the thermo-elastic behavior of laminated beams were discussed in detail.
基金Project supported by the National Key R&D Program of China(Grant No.2016YFA0200503)the National Natural Science Foundation of China(Grant No.61327813)
文摘We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics.There are two obvious transition platforms within the critical temperature regimes for the experimental conductance data,which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gm peak in Vg1 and valley in Vg2. The crossover temperatures of the electron hopping behaviors are analytically determined by the temperature-dependent conductance at the gate voltages Vg1 and Vg2. This finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.
文摘Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford [12], is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case by Ratts and Rant [14].
文摘A GaN/Si nanoheterostructure is prepared by growing wurtzite GaN on a silicon nanoporous pillar array (Si-NPA) with a chemical vapor deposition method. The temperature evolution of the photoluminescence (PL) of GaN/Si- NPA is measured and the PL mechanism is analyzed. It is found that the PL spectrum is basically composed of two narrow ultraviolet peaks and a broad blue peak, corresponding to the near band-edge emission of GaN and its phonon replicas, and the emission from Si-NPA. No GaN defect-related PL is observed in the as-prepared GaN/Si-NPA. Our experiments prove that Si-NPA might be an ideal substrate for preparing high-quality Si-based GaN nanomaterials or nanodeviees.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11675020,11375028,11075018 and 10675023
文摘The effects of irradiation of 1.0 MeV electrons on the n+-p GaAs middle cell of GalnP/GaAs/Ge triple-junction solar cells are investigated by temperature-dependent photoluminescence (PL) measurements in the 10-300K temperature range. The appearance of thermal quenching of the PL intensity with increasing temperature confirms the presence of a nonradiative recombination center in the cell after the electron irradiation, and the thermal activation energy of the center is determined using the Arrhenius plot of the PL intensity. Furthermore, by comparing the thermal activation and the ionization energies of the defects, the nonradiative recombination center in the n+ p GaAs middle cell acting as a primary defect is identified as the E5 electron trap located at Ec - 0.96 eV.
基金supported financially by the National Natural Science Foundation of China(Nos.31401053 and 31471966)Guangdong Provincial Natural Science Foundation of China(No.2015A030313903)+1 种基金GDAS Special Project of Science and Technology Development(2017GDASCX-0107)the Funds for Environment Construction and Capacity Building of GDAS’Research Platform(2016GDASPT-0107)
文摘Temperature-dependent sex determination(TSD) is a type of environmental sex determination in which the sex of the embryos depends on the ambient temperature; however,the molecular mechanisms governing this process remain unknown.Aromatase,encoded by the cyp19a1 gene,which converts androgens into estrogens in animals,was considered to be the key gene for TSD.In this study,the 5'-flanking region of the cyp19a1 gene in Reeves' turtle(Mauremys reevesii) was cloned,and the promoter region was identified using the luciferase reporter assay.Then the eggs of Reeves' turtle were incubated at different temperatures(26°C: male-biased temperature; 29°C: non-sex-biased temperature and 32°C: female-biased temperature).During the thermosensitive period,the adrenal kidney gonad complexes(AKG) were sampled.DNA methylation analysis of the AKG samples showed that the promoter region of the cyp19a1 gene was significantly de-methylated in the female-biased temperature regime(P<0.01).Quantitative analysis of the cyp19a1 gene and estrogen by q PCR and Elisa assay showed that the expression level of the cyp19a1 gene and estrogen content were both upregulated significantly at the female-biased temperature(P<0.01).These results indicated that the de-methylation response of the cyp19a1 gene to incubation temperature,especially at the female-biased temperature,could lead to temperature-specific expression of aromatase and increased estrogen levels,which may further determine gonadal development in Reeves' turtle.These findings provide insights into the genetic mechanisms underlying TSD.
文摘We consider the one-dimensional bio-heat transfer equation with quadratic temperature-dependent blood perfusion, which governs the temperature distribution inside biological tissues. Using an extended mapping method with symbolic computation, we obtain the exact analytical thermal traveling wave solution, which describes the non-uniform temperature distribution inside the bodies. The found exact solution is used to investigate the temperature distribution in the tissues. It is found that the surrounding medium with higher temperature does not necessarily imply that the tissue will quickly (after a short duration of heating process) reach the desired temperature. It is also found that increased perfusion causes a decline in local temperature.
文摘Analytical thermal traveling-wave distribution in biological tissues through a bio-heat transfer (BHT) model with linear/quadratic temperature-dependent blood perfusion is discussed in this paper. Using the extended generalized Riccati equation mapping method, we find analytical traveling wave solutions of the considered BHT equation. All the travelling wave solutions obtained have been used to explicitly investigate the effect of linear and quadratic coefficients of temperature dependence on temperature distribution in tissues. We found that the parameter of the nonlinear superposition formula for Riccati can be used to control the temperature of living tissues. Our results prove that the extended generalized Riccati equation mapping method is a powerful tool for investigating thermal traveling-wave distribution in biological tissues.
基金Supported by NNSFC(11271306)the Natural Science Foundation of Fujian Province of China(2015J01023)the Fundamental Research Funds for the Central Universities of Xiamen University(20720160012)
文摘The initial boundary value problem of the one-dimensional magneto-hydrodynamics system, when the viscosity, thermal conductivity, and magnetic diffusion coefficients are general smooth functions of temperature, is considered in this article. A unique global classical solution is shown to exist uniquely and converge to the constant state as the time tends to infinity under certain assumptions on the initial data and the adiabatic exponent γ. The initial data can be large if γ is sufficiently close to 1.
基金supported by the National Basic Research Program of China(No.2007CB613301)the National Natural Science Foundation(No.20674005)the Program of Beijing Municipal Science and Technology(No.Y0405004040121).
文摘In this study, right-handed dicinnamate isosorbide was synthesized via the esterification reaction betweefi optically active isosorbide and cinnamate. The chiral dopant was characterized by FT-IR, ^1H NMR, elemental analysis, SEM, UV absorption spectrum. After dissolving in a nematic liquid crystal mixture, the chiral dopant exhibited a temperature-dependent solubility in the chiral nematic liquid crystal mixture. Meanwhile, a relatively high value of helical twisting power of the polymerizable chiral dopant was determined. The results show that the chiral dopant has great potential in achieving a polymer stabilized chiral nematic liquid crystal film with a broad-band selective reflection. C 2009 Huai Yang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金This work was supported by the National Science Foundation of China
文摘The influence of temperature-dependent properties on temperature response and optimum design of newly developed ceramic-metal functionally graded materials under cyclic thermal loading and high temperature gradient environment is studied. The thermal conductivity of the material is considered to be dependent on the temperature. In this paper, the temperature response of the material is calculated using a nonlinear finite element method. Emphasis is placed on the influence of temperatue-dependent properties on the thermal response and insulation property of the material render the different graded compositional distributions and different heat flux magnitudes. Through the analysis, it is suggested that the influence of temperature-dependent properties can not be neglected in the temperature response analysis and the optimum design process of the material must be based on the temperature-dependent temperature analysis theory.
基金supported by the National High Technology Research and Development Program of China(Grant No.2013AA014201)the National Key Foundation for Exploring Scientific Instrument of China(Grant No.2014YQ120351)the Natural Science Foundation of Tianjin(Grant No.11JCYBJC00300,4JCZDJC31200,15JCYBJC16700,and 15JCYBJC16800)
文摘Colloidal ZnAgInSe(ZAISe) quantum dots(QDs) with different particle sizes were obtained by accommodating the reaction time. In the previous research, photoluminescence(PL) of ZAISe QDs only could be tuned by changing the composition. In this work the size-tunable photoluminescence was observed successfully. The red shift in the photoluminescence spectra was caused by the quantum confinement effect. The time-resolved photoluminescence indicated that the luminescence mechanisms of the ZAISe QDs were contributed by three recombination processes. Furthermore, the temperature-dependent PL spectra were investigated. We verified the regular change of temperature-dependent PL intensity, peak energy, and the emission linewidth of broadening for ZAISe QDs. According to these fitting data, the activation energy(?E) of ZAISe QDs with different nanocrystal sizes was obtained and the stability of luminescence was discussed.
基金Supported by the National Key Research and Development Plan under Grant No 2017YFB0403000the Fundamental Research Funds for the Central Universities under Grant No JB181110
文摘The effect of temperature on the characteristics of gallium nitride (GaN) Schottky barrier diodes (SBDs) with TiN and Ni anodes is evaluated. With increasing the temperature from 25 to 175℃, reduction of the turn-on voltage and increase of the leakage current are observed for both GaN SBDs with TiN and Ni anodes. The performance after thermal treatment shows much better stability for SBDs with Ti N anode, while those with Ni anode change due to more interface states. It is found that the leakage currents of the GaN SBDs with TiN anode are in accord with the thermionic emission model whereas those of the GaN SBDs with Ni anode are much higher than the model. The Silvaco TCAD simulation results show that phonon-assisted tunneling caused by interface states may lead to the instability of electrical properties after thermal treatment, which dominates the leakage currents for GaN SBDs with Ni anode. Compared with GaN SBDs with Ni anode, GaN SBDs with TiN anode are beneficial to the application in microwave power rectification fields due to lower turn-on voltage and better thermal stability.
基金Ministry of Higher Education and Universiti Malaysia Pahang through RDU182307.
文摘The viscosity of a substance or material is intensely influenced by the temperature,especially in the field of lubricant engineering where the changeable temperature is well executed.In this paper,the problem of temperature-dependent viscosity on mixed convection flow of Eyring Powell fluid was studied together with Newtonian heating thermal boundary condition.The flow was assumed to move over a vertical stretching sheet.The model of the problem,which is in partial differential equations,was first transformed to ordinary differential equations using appropriate transformations.This approach was considered to reduce the complexity of the equations.Then,the transformed equations were solved using the Keller box method under the finite difference scheme approach.The validation process of the results was performed,and it was found to be in an excellent agreement.The results on the present computation are shown in tabular form and also graphical illustration.The major finding was observed where the skin friction and Nusselt number were boosted in the strong viscosity.