Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In ord...Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.展开更多
In chemical processes, fault diagnosis is relatively difficult due to the incomplete prior-knowledge and unpredictable production changes. To solve the problem, a case-based extension fault diagnosis (CEFD) method is ...In chemical processes, fault diagnosis is relatively difficult due to the incomplete prior-knowledge and unpredictable production changes. To solve the problem, a case-based extension fault diagnosis (CEFD) method is proposed combining with extension theory, in which the basic-element model is used for the unified and deep fault description, the distance concept is applied to quantify the correlation degree between the new fault and the original fault cases, and the extension transformation is used to expand and obtain the solution of unknown faults. With the application in Tennessee Eastman process, the result indicates that CEFD method has a flexible fault representation, objective fault retrieve performance and good ability for fault study, providing a new way for diagnosing production faults accurately.展开更多
Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussi...Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.展开更多
For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component b...For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.展开更多
In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured resid...In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated.展开更多
Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recurrent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping...Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recurrent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping ability. As a new recurrent neural network, reservoir neural network can effectively process the time-series prediction. However, the ill-posedness problem of reservoir neural networks has seriously restricted the generalization performance. In this paper, a fault prediction algorithm based on time-series is proposed using improved reservoir neural networks. The basic idea is taking structure risk into consideration, that is, the cost function involves not only the experience risk factor but also the structure risk factor. Thus a regulation coefficient is introduced to calculate the output weight of the reservoir neural network. As a result, the amplitude of output weight is effectively controlled and the ill-posedness problem is solved. Because the training speed of ordinary reservoir networks is naturally fast, the improved reservoir networks for time-series prediction are good in speed and generalization ability. Experiments on Mackey–Glass and sunspot time series prediction prove the effectiveness of the algorithm. The proposed algorithm is applied to TE process fault prediction. We first forecast some timeseries obtained from TE and then predict the fault type adopting the static reservoirs with the predicted data.The final prediction correct rate reaches 81%.展开更多
基金Supported by the National Basic Research Program of China (2013CB733600), the National Natural Science Foundation of China (21176073), the Doctoral Fund of Ministry of Education of China (20090074110005), the Program for New Century Excellent Talents in University (NCET-09-0346), Shu Guang Project (09SG29) and the Fundamental Research Funds for the Central Universities.
文摘Fault diagnosis and monitoring are very important for complex chemical process. There are numerous methods that have been studied in this field, in which the effective visualization method is still challenging. In order to get a better visualization effect, a novel fault diagnosis method which combines self-organizing map (SOM) with Fisher discriminant analysis (FDA) is proposed. FDA can reduce the dimension of the data in terms of maximizing the separability of the classes. After feature extraction by FDA, SOM can distinguish the different states on the output map clearly and it can also be employed to monitor abnormal states. Tennessee Eastman (TE) process is employed to illustrate the fault diagnosis and monitoring performance of the proposed method. The result shows that the SOM integrated with FDA method is efficient and capable for real-time monitoring and fault diagnosis in complex chemical process.
基金Supported by the National Natural Science Foundation of China (61104131).
文摘In chemical processes, fault diagnosis is relatively difficult due to the incomplete prior-knowledge and unpredictable production changes. To solve the problem, a case-based extension fault diagnosis (CEFD) method is proposed combining with extension theory, in which the basic-element model is used for the unified and deep fault description, the distance concept is applied to quantify the correlation degree between the new fault and the original fault cases, and the extension transformation is used to expand and obtain the solution of unknown faults. With the application in Tennessee Eastman process, the result indicates that CEFD method has a flexible fault representation, objective fault retrieve performance and good ability for fault study, providing a new way for diagnosing production faults accurately.
基金Supported by the National Natural Science Foundation of China(61273167)
文摘Complex processes often work with multiple operation regions, it is critical to develop effective monitoring approaches to ensure the safety of chemical processes. In this work, a discriminant local consistency Gaussian mixture model(DLCGMM) for multimode process monitoring is proposed for multimode process monitoring by integrating LCGMM with modified local Fisher discriminant analysis(MLFDA). Different from Fisher discriminant analysis(FDA) that aims to discover the global optimal discriminant directions, MLFDA is capable of uncovering multimodality and local structure of the data by exploiting the posterior probabilities of observations within clusters calculated from the results of LCGMM. This may enable MLFDA to capture more meaningful discriminant information hidden in the high-dimensional multimode observations comparing to FDA. Contrary to most existing multimode process monitoring approaches, DLCGMM performs LCGMM and MFLDA iteratively, and the optimal subspaces with multi-Gaussianity and the optimal discriminant projection vectors are simultaneously achieved in the framework of supervised and unsupervised learning. Furthermore, monitoring statistics are established on each cluster that represents a specific operation condition and two global Bayesian inference-based fault monitoring indexes are established by combining with all the monitoring results of all clusters. The efficiency and effectiveness of the proposed method are evaluated through UCI datasets, a simulated multimode model and the Tennessee Eastman benchmark process.
基金National Natural Science Foundation of China(61673279)。
文摘For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.
基金Supported by the National Natural Science Foundation of China(60574047)the National High Technology Research and Development Program of China(2007AA04Z168,2009AA04Z154)the Research Fund for the Doctoral Program of Higher Education in China(20050335018)
文摘In industrial processes,there exist faults that have complex effect on process variables.Complex and simple faults are defined according to their effect dimensions.The conventional approaches based on structured residuals cannot isolate complex faults.This paper presents a multi-level strategy for complex fault isolation.An extraction procedure is employed to reduce the complex faults to simple ones and assign them to several levels.On each level,faults are isolated by their different responses in the structured residuals.Each residual is obtained insensitive to one fault but more sensitive to others.The faults on different levels are verified to have different residual responses and will not be confused.An entire incidence matrix containing residual response characteristics of all faults is obtained,based on which faults can be isolated.The proposed method is applied in the Tennessee Eastman process example,and the effectiveness and advantage are demonstrated.
基金Supported by the National Natural Science Foundation of China(61074153)
文摘Time-series prediction is one of the major methodologies used for fault prediction. The methods based on recurrent neural networks have been widely used in time-series prediction for their remarkable non-liner mapping ability. As a new recurrent neural network, reservoir neural network can effectively process the time-series prediction. However, the ill-posedness problem of reservoir neural networks has seriously restricted the generalization performance. In this paper, a fault prediction algorithm based on time-series is proposed using improved reservoir neural networks. The basic idea is taking structure risk into consideration, that is, the cost function involves not only the experience risk factor but also the structure risk factor. Thus a regulation coefficient is introduced to calculate the output weight of the reservoir neural network. As a result, the amplitude of output weight is effectively controlled and the ill-posedness problem is solved. Because the training speed of ordinary reservoir networks is naturally fast, the improved reservoir networks for time-series prediction are good in speed and generalization ability. Experiments on Mackey–Glass and sunspot time series prediction prove the effectiveness of the algorithm. The proposed algorithm is applied to TE process fault prediction. We first forecast some timeseries obtained from TE and then predict the fault type adopting the static reservoirs with the predicted data.The final prediction correct rate reaches 81%.