A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total L...A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stress-strain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.展开更多
As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an impor...As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.展开更多
DNA nanotubes(DNTs)with user-defined shapes and functionalities have potential applications in many fields.So far,compared with numerous experimental studies,there have been only a handful of models on the mechanical ...DNA nanotubes(DNTs)with user-defined shapes and functionalities have potential applications in many fields.So far,compared with numerous experimental studies,there have been only a handful of models on the mechanical properties of such DNTs.This paper aims at presenting a multiscale model to quantify the correlations among the pre-tension states,tensile properties,encapsulation structures of DNTs,and the surrounding factors.First,by combining a statistical worm-like-chain(WLC)model of single DNA deformation and Parsegian's mesoscopic model of DNA liquid crystal free energy,a multiscale tensegrity model is established,and the pre-tension state of DNTs is characterized theoretically for the first time.Then,by using the minimum potential energy principle,the force-extension curve and tensile rigidity of pre-tension DNTs are predicted.Finally,the effects of the encapsulation structure and surrounding factors on the tensile properties of DNTs are studied.The predictions for the tensile behaviors of DNTs can not only reproduce the existing experimental results,but also reveal that the competition of DNA intrachain and interchain interactions in the encapsulation structures determines the pre-tension states of DNTs and their tensile properties.The changes in the pre-tension states and environmental factors make the monotonic or non-monotonic changes in the tensile properties of DNTs under longitudinal loads.展开更多
A considerable number of viruses’structures have been discovered and more are expected to be identified.Different viruses’symmetries can be observed at the nanoscale level.The mechanical models of some viruses reali...A considerable number of viruses’structures have been discovered and more are expected to be identified.Different viruses’symmetries can be observed at the nanoscale level.The mechanical models of some viruses realised by scientists are described in this paper,none of which has taken into consideration the internal deformation of subsystems. The authors’models for some viruses’elements are introduced,with rigid and flexible links,which reproduce the movements of viruses including internal deformations of the subunits.展开更多
Traditional rigid-body in-pipe robots usually have complex and heavy structures with limited flexibility and adaptability.Although soft in-pipe robots have great improvements in flexibility,they still have manufacturi...Traditional rigid-body in-pipe robots usually have complex and heavy structures with limited flexibility and adaptability.Although soft in-pipe robots have great improvements in flexibility,they still have manufacturing difficulties due to their reliance on high-performance soft materials.Tensegrity structure is a kind of self-stressed spatial structure consisting discrete rigid struts connected by a continuous net of tensional flexible strings,which combines the advantages of both rigid structures and soft structures.By applying tensegrity structures into robotics,this paper proposes a novel worm-like tensegrity robot for moving inside pipes.First,a robot module capable of body deformation is designed based on the concept of tensegrity and its deformation performance is analyzed.Then,the optimal parameters of the module are obtained based on the tensegrity form-finding.The deformation ability of the tensegrity module is tested experimentally.Finally,the worm-like tensegrity robot that can crawl inside pipes is developed by connecting three modules in series.Motion performance and load capacity are tested on the prototype of the worm-like tensegrity robot by experiments of moving in horizontal pipe,vertical pipe,and elbow pipe.Experimental results demonstrate the effectiveness of the proposed design and suggest that the robot has high compliance,mobility,and adaptability although with simple structure and low cost.展开更多
Modular continuum robots possess significant versatility across various scenarios;however,conventional assembling methods typically rely on linear connection between modules.This limitation can impede the robotic inte...Modular continuum robots possess significant versatility across various scenarios;however,conventional assembling methods typically rely on linear connection between modules.This limitation can impede the robotic interaction capabilities,especially in specific engineering applications.Herein,inspired by the assembling pattern between the femur and tibia in a human knee,we proposed a multidirectional assembling strategy.This strategy encompasses linear,oblique,and orthogonal connections,allowing a two-module continuum robot to undergo in-situ reconfiguration into three distinct initial configurations.To anticipate the final configuration resulting from diverse assembling patterns,we employed the positional formulation finite element framework to establish a mechanical model,and the theoretical results reveal that our customizable strategy can offer an effective route for robotic interactions.We showcased diverse assembling patterns for coping with interaction requirements.The experimental results indicate that our modular continuum robot not only reconfigures its initial profile in situ but also enables on-demand regulation of the final configuration.These capabilities provide a foundation for the future development of modular continuum robots,enabling them to be adaptable to diverse environments,particularly in unstructured surroundings.展开更多
Tensegrities made of tensile strings and compressed struts possess large strength-to-mass ratio values but tend to experience non-negligible vibration in dynamic environments because of poor structural damping.Here,we...Tensegrities made of tensile strings and compressed struts possess large strength-to-mass ratio values but tend to experience non-negligible vibration in dynamic environments because of poor structural damping.Here,we introduce particle dampers into a tensegrity prism to attenuate vibration,with the goal of establishing a lightweight and efficient approach of vibration suppression.To integrate the particle dampers and the tensegrity,a novel strut structure formed by assembling a solid strut and a hollow strut is devised,in which granular materials are inserted to develop a particle damper.The vibration attenuation performance of the tensegrity prism is investigated through exciter tests.According to the experimental parametric study,the influences of system parameters including excitation magnitude,the filling height of particles,particle size and the configuration of tensegrity prism on the vibration attenuation performance is analyzed.In addition,the experimental results regarding the dependence of the vibration attenuation on the system parameters are interpreted by the mechanism of collisions and frictions between particles and between particles and struts.The maximal vibration attenuation ratio of 76%can be achieved in the experiments.Thus,this research can provide insights into the design of lightweight tensegrity structures where vibration suppression is important,particularly in some dynamic environments.展开更多
基金support of the research reported here by Basic Science Research Program through the National Research Foundation of Korea (NRF)funded by the Ministry of Education, Science and Technology (NRF2010-0019373)
文摘A numerical method is presented for the large deflection in elastic analysis of tensegrity structures including both geometric and material nonlinearities.The geometric nonlinearity is considered based on both total Lagrangian and updated Lagrangian formulations,while the material nonlinearity is treated through elastoplastic stress-strain relationship.The nonlinear equilibrium equations are solved using an incremental-iterative scheme in conjunction with the modified Newton-Raphson method.A computer program is developed to predict the mechanical responses of tensegrity systems under tensile,compressive and flexural loadings.Numerical results obtained are compared with those reported in the literature to demonstrate the accuracy and efficiency of the proposed program.The flexural behavior of the double layer quadruplex tensegrity grid is sufficiently good for lightweight large-span structural applications.On the other hand,its bending strength capacity is not sensitive to the self-stress level.
基金supported by the National Natural Science Foundation of China (10732050)Tsinghua University (2009THZ02122)the National Basic Research Program of China (973) (2010CB631005)
文摘As a special type of novel flexible structures, tensegrity holds promise for many potential applications in such fields as materials science, biomechanics, civil and aerospace engineering. Rhombic systems are an important class of tensegrity structures, in which each bar constitutes the longest diagonal of a rhombus of four strings. In this paper, we address the design methods of rhombic structures based on the idea that many tensegrity structures can be constructed by assembling one-bar elementary cells. By analyzing the properties of rhombic cells, we first develop two novel schemes, namely, direct enumeration scheme and cell-substitution scheme. In addition, a facile and efficient method is presented to integrate several rhombic systems into a larger tensegrity structure. To illustrate the applications of these methods, some novel rhombic tensegrity structures are constructed.
基金Project supported by the National Natural Science Foundation of China(Nos.12172204,11772182,11272193,and 10872121)the Program of Shanghai Municipal Education Commission(No.2019-01-07-00-09-E00018)the Natural Science Foundation of Shanghai of China(No.22Z00142)。
文摘DNA nanotubes(DNTs)with user-defined shapes and functionalities have potential applications in many fields.So far,compared with numerous experimental studies,there have been only a handful of models on the mechanical properties of such DNTs.This paper aims at presenting a multiscale model to quantify the correlations among the pre-tension states,tensile properties,encapsulation structures of DNTs,and the surrounding factors.First,by combining a statistical worm-like-chain(WLC)model of single DNA deformation and Parsegian's mesoscopic model of DNA liquid crystal free energy,a multiscale tensegrity model is established,and the pre-tension state of DNTs is characterized theoretically for the first time.Then,by using the minimum potential energy principle,the force-extension curve and tensile rigidity of pre-tension DNTs are predicted.Finally,the effects of the encapsulation structure and surrounding factors on the tensile properties of DNTs are studied.The predictions for the tensile behaviors of DNTs can not only reproduce the existing experimental results,but also reveal that the competition of DNA intrachain and interchain interactions in the encapsulation structures determines the pre-tension states of DNTs and their tensile properties.The changes in the pre-tension states and environmental factors make the monotonic or non-monotonic changes in the tensile properties of DNTs under longitudinal loads.
文摘A considerable number of viruses’structures have been discovered and more are expected to be identified.Different viruses’symmetries can be observed at the nanoscale level.The mechanical models of some viruses realised by scientists are described in this paper,none of which has taken into consideration the internal deformation of subsystems. The authors’models for some viruses’elements are introduced,with rigid and flexible links,which reproduce the movements of viruses including internal deformations of the subunits.
基金National Natural Science Foundation of China,52005293,Yixiang Liu,U20A20201Yixiang Liu,Shandong Provincial Natural Science Foundation,ZR2020QE152+3 种基金Yixiang Liu,Key R&D Program of Hebei Province,China,20311803DYixiang Liu,Key R&D Program of Shandong Province,China,2021CXGC011304Yixiang Liu,Research Project of the State Key Laboratory of Mechanical Transmissions,Chongqing University,SKLMT-MSKFKT-202118Yixiang Liu,Fundamental Research Funds of Shandong University,2021JCG001,Yixiang Liu.
文摘Traditional rigid-body in-pipe robots usually have complex and heavy structures with limited flexibility and adaptability.Although soft in-pipe robots have great improvements in flexibility,they still have manufacturing difficulties due to their reliance on high-performance soft materials.Tensegrity structure is a kind of self-stressed spatial structure consisting discrete rigid struts connected by a continuous net of tensional flexible strings,which combines the advantages of both rigid structures and soft structures.By applying tensegrity structures into robotics,this paper proposes a novel worm-like tensegrity robot for moving inside pipes.First,a robot module capable of body deformation is designed based on the concept of tensegrity and its deformation performance is analyzed.Then,the optimal parameters of the module are obtained based on the tensegrity form-finding.The deformation ability of the tensegrity module is tested experimentally.Finally,the worm-like tensegrity robot that can crawl inside pipes is developed by connecting three modules in series.Motion performance and load capacity are tested on the prototype of the worm-like tensegrity robot by experiments of moving in horizontal pipe,vertical pipe,and elbow pipe.Experimental results demonstrate the effectiveness of the proposed design and suggest that the robot has high compliance,mobility,and adaptability although with simple structure and low cost.
基金supported by the Shenzhen Science and Technology Program(Grant No.20220817165030002,No.GXWD2021B03)National Natural Science Foundation of China(Grant No.52275298 and No.11922203).
文摘Modular continuum robots possess significant versatility across various scenarios;however,conventional assembling methods typically rely on linear connection between modules.This limitation can impede the robotic interaction capabilities,especially in specific engineering applications.Herein,inspired by the assembling pattern between the femur and tibia in a human knee,we proposed a multidirectional assembling strategy.This strategy encompasses linear,oblique,and orthogonal connections,allowing a two-module continuum robot to undergo in-situ reconfiguration into three distinct initial configurations.To anticipate the final configuration resulting from diverse assembling patterns,we employed the positional formulation finite element framework to establish a mechanical model,and the theoretical results reveal that our customizable strategy can offer an effective route for robotic interactions.We showcased diverse assembling patterns for coping with interaction requirements.The experimental results indicate that our modular continuum robot not only reconfigures its initial profile in situ but also enables on-demand regulation of the final configuration.These capabilities provide a foundation for the future development of modular continuum robots,enabling them to be adaptable to diverse environments,particularly in unstructured surroundings.
基金supported by the National Natural Science Foundation of China(Grant No.12072266).
文摘Tensegrities made of tensile strings and compressed struts possess large strength-to-mass ratio values but tend to experience non-negligible vibration in dynamic environments because of poor structural damping.Here,we introduce particle dampers into a tensegrity prism to attenuate vibration,with the goal of establishing a lightweight and efficient approach of vibration suppression.To integrate the particle dampers and the tensegrity,a novel strut structure formed by assembling a solid strut and a hollow strut is devised,in which granular materials are inserted to develop a particle damper.The vibration attenuation performance of the tensegrity prism is investigated through exciter tests.According to the experimental parametric study,the influences of system parameters including excitation magnitude,the filling height of particles,particle size and the configuration of tensegrity prism on the vibration attenuation performance is analyzed.In addition,the experimental results regarding the dependence of the vibration attenuation on the system parameters are interpreted by the mechanism of collisions and frictions between particles and between particles and struts.The maximal vibration attenuation ratio of 76%can be achieved in the experiments.Thus,this research can provide insights into the design of lightweight tensegrity structures where vibration suppression is important,particularly in some dynamic environments.