期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
ON THE TENSILE MECHANICAL PROPERTY OF Si-Mn TRIP STEELS AT HIGH STRAIN RATE 被引量:8
1
作者 X.C. Wei, L. Li, R.Y. Fu and W. ShiSchool of Materials Science and Engineering, Shanghai University, Shanghai 200072, China Manuscript received 18 June 2001 in revised form 7 November 2001 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第3期285-294,共10页
Tensile mechanical properties of 1.6Si-1.58Mn-0.195C TRIP (transformation-induced plasticity) steels under high strain rate and effects of DP (dual-phase) treatments were studied and compared to the quasi-static tensi... Tensile mechanical properties of 1.6Si-1.58Mn-0.195C TRIP (transformation-induced plasticity) steels under high strain rate and effects of DP (dual-phase) treatments were studied and compared to the quasi-static tensile behavior. The results show that the increasing of strain rate leads to increasing in their strengths and decreasing in the uniform elongation remarkably. Because the stable retained austenite in TRIP steel can transform to martensite during tensile testing and the material exhibits excellent characteristic of transformation induced plasticity, the plastic deformation behavior is evidently improved and the combination of strength and elongation is superior to that of dual-phase steel, although its strength is smaller than that of DP steel. However, DP treated steel shown lower elongation under dynamic tension in spite of higher strength. A model was proposed to explain the excellent elongation rate of TRIP steel compared with DP steel on the basis of SEM analysis and the strength of the components in microstructure. 展开更多
关键词 automobile sheet steel TRIP steel high strain rate tensile impact
下载PDF
Effects of Strain Rate and Texture on the Tensile Behavior of Pre-strained NiCr Microwires
2
作者 周秀文 QI Yidong +6 位作者 LIU Xudong NIU Gao YANG Bo YANG Yi ZHU Ye YU Bin 吴卫东 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第2期459-465,共7页
The stress–strain behavior and strain rate sensitivity of pre-strained Ni80Cr20(Ni20Cr) were studied at strain rates from 4.8×10^(–4)s^(–1) to 1.1×10^(–1)s^(–1). Specimens were prepared throug... The stress–strain behavior and strain rate sensitivity of pre-strained Ni80Cr20(Ni20Cr) were studied at strain rates from 4.8×10^(–4)s^(–1) to 1.1×10^(–1)s^(–1). Specimens were prepared through cold drawing with abnormal plastic deformation. The texture of the specimen was characterized using electron backscatter diffraction. Results revealed that the ultimate tensile strength and ductility of the pre-strained Ni20Cr microwires simultaneously increased with increasing strain rate. Twinning-induced negative strain rate sensitivity was discovered. Positive strain rate sensitivity was present in fracture flow stress, whereas negative strain rate sensitivity was detected in flow stress values of σ_(0.5%) and σ_(1%). Tensile test of the pre-strained Ni20Cr showed that twinning deformation predominated, whereas dislocation slip deformation dominated when twinning deformation reached saturation. The trends observed in the fractions of 2°-5°, 5°-15°, and 15°-180° grain boundaries confirmed that twinning deformation dominated the first stage. 展开更多
关键词 tensile behavior strain rate sensitivity Ni20Cr microstructure characterization microwire
下载PDF
Deformation behaviour in advanced heat resistant materials during slow strain rate testing at elevated temperature
3
作者 Mattias Calmunger Guocai Chai +1 位作者 Sten Johansson Johan Moverare 《Theoretical & Applied Mechanics Letters》 CAS 2014年第4期20-25,共6页
In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stai... In this study, slow strain rate tensile testing at elevated temperature is used to evaluate the influence of temperature and strain rate on deformation behaviour in two different austenitic alloys. One austenitic stainless steel (AISI 316L) and one nickel-base alloy (Alloy 617) have been investigated. Scanning electron microscopy related techniques as electron channelling contrast imaging and electron backscattering diffraction have been used to study the damage and fracture micromechanisms. For both alloys the dominante damage micromech- anisms are slip bands and planar slip interacting with grain bounderies or precipitates causing strain concentrations. The dominante fracture micromechanism when using a slow strain rate at elevated temperature, is microcracks at grain bounderies due to grain boundery embrittlement caused by precipitates. The decrease in strain rate seems to have a small influence on dynamic strain ageing at 650℃. 展开更多
关键词 dynamic strain ageing slow strain rate tensile testing FRACTURE DAMAGE
下载PDF
Effect of hydrogen on the stress corrosion cracking behavior of X80 pipeline steel in Ku'erle soil simulated solution 被引量:32
4
作者 Ping Liang Cui-wei Du +2 位作者 Xiao-gang Li Xu Chen Zhang liang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第4期407-413,共7页
Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was in... Hydrogen was a key factor resulting in stress corrosion cracking (SCC) of X80 pipeline steel in Ku'erle soil simulated solution. In this article, the effect of hydrogen on the SCC susceptibility of X80 steel was investigated further by slow strain rate tensile test, the surface fractures were observed using scanning electron microscopy (SEM), and the fracture mechanism of SCC was discussed. The results indicate that hydrogen increases the SCC susceptibility. The SEM micrographs of hydrogen precharged samples presents a brittle quasi-cleavage feature, and pits facilitate the transgranular crack initiation. In the electrochemical impedance spectroscopy (EIS) measurement, the decreased polarization resistance and the pitting resistance of samples with hydrogen indicate that hydrogen increases the dissolution rate and deteriorates the pitting corrosion resistance. The potentiodynamic polarization curves present that hydrogen also accelerates the dissolution rate of the crack tip. 展开更多
关键词 pipeline steel stress corrosion cracking hydrogen assisted cracking slow strain rate tensile
下载PDF
Multi-scale study of ductility-dip cracking in nickel-based alloy dissimilar metal weld 被引量:4
5
作者 Yifeng Li Jianqiu Wang +2 位作者 En-Hou Han Wenbo Wu Hannu Hanninen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第4期545-559,共15页
A ductility-dip-cracking(DDC)-concentrated zone(DCZ) in a width of about 3 mm was observed adjacent to the AISI 316 L/52 Mw fusion boundary(FB) in 52 Mw. The morphology, microstructure, mechanical and thermal properti... A ductility-dip-cracking(DDC)-concentrated zone(DCZ) in a width of about 3 mm was observed adjacent to the AISI 316 L/52 Mw fusion boundary(FB) in 52 Mw. The morphology, microstructure, mechanical and thermal properties and corrosion behavior in simulated primary water of DDC/DCZ were investigated by scanning electron microscopy(SEM), transmission electron microscopy(TEM), 3 D X-ray tomography(XRT), 3 D atom probe(3 DAP), slow strain rate tensile(SSRT) testing and thermal dilatometry. The results indicate that DDCs are random-shaped and disc-like cavities with corrugated structure of inner surface and are parallel in groups along straight high-angle boundaries of columnar grains, ranging from micrometers to millimeters in size. Large-size M_(23)C_6 carbides dominate on the grain boundaries rather than MC(M=Nb, Ti), and thus the bonding effect of carbides is absent for the straight grain boundaries.The impurity segregation of O is confirmed for the inner surfaces of DDC. The oxide film formed on the inner surface of DDC(about 50 nm) is approximately twice as thick as that on the matrix(about 25 nm)in simulated primary water. The yield strength, tensile strength and elongation to fracture of 52 MwDCZ(400 MPa, 450 MPa and 20 %, respectively) are lower than those of 52 Mw-MZ(460 MPa, 550 MPa and 28 %, respectively). The intrinsic high-restraint weld structure, the additional stress/strain caused by the thermal expansion difference between AISI 316 L and 52 Mw as well as the detrimental carbide precipitation and the resulting grain boundary structure all add up to cause the occurrence of DCZ in the dissimilar metal weld. 展开更多
关键词 Dissimilar metal weld Nickel-base alloy Ductility-dip cracking(DDC) Slow strain rate tensile(SSRT) testing Thermal expansion coefficient
原文传递
Effect of Heat Input on Fume Generation and Joint Properties of Gas Metal Arc Welded Austenitic Stainless Steel 被引量:6
6
作者 K Srinivasan V Balasubramanian 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2011年第10期72-79,共8页
The effect of heat input on fume and their compositions during gas metal arc welding (GMAW) of AISI 316 stainless steel plates are investigated. Fume generation rate (FGR) and fume percentage were determined by AN... The effect of heat input on fume and their compositions during gas metal arc welding (GMAW) of AISI 316 stainless steel plates are investigated. Fume generation rate (FGR) and fume percentage were determined by ANSI/AWS F1.2 methods. Particle characterization was performed with SEM-XEDS and XRF analysis to reveal the particle morphology and chemical composition of the fume particles. The SEM analysis reveals the morphology of particles having three distinct shapes namely spherical, irregular, and agglomerated. Spherical particles were the most abundant type of individual particle. All the fume particle size falls in the range of less than 100 nm. Mechanical properties (strength, hardness and toughness) and microstructural analysis of the weld deposits were evaluated. It is found that heat input of 1.15 kJ/mm is beneficial to weld stainless steel by GMAW process due to lower level of welding fume emissions and superior mechanical properties of the joints. 展开更多
关键词 gas metal arc weldings fume generation rates austenitic stainless steels tensile property scanning electron microscopes X-ray florescence spectrometer
原文传递
Influence of inclusions on hydrogen-induced delayed cracking in hot stamping steels
7
作者 Yong Chen Jing Liu +3 位作者 Feng Huang Ling Chen Yarbjing Su Gui-feng Zhou 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2019年第11期1199-1208,共10页
The hydrogen-induced delayed cracking(HIDC)behaviors of two types of 1500 MPa grade hot stamping steels(HSSs)have been investigated by the method of slow strain rate tensile test and hydrogen permeation,where one is m... The hydrogen-induced delayed cracking(HIDC)behaviors of two types of 1500 MPa grade hot stamping steels(HSSs)have been investigated by the method of slow strain rate tensile test and hydrogen permeation,where one is manufactured by compact strip production(CSP)process which is a revolution to the traditional HSS and the other by the traditional cold rolling process.The results show that the performance of HSS produced by CSP is superior to that of the traditional HSS,due to lower hydrogen embrittlement index,lower hydrogen diffusion coefficient and lower hydrogen content.It has been found that HIDC behavior is closely associated with inclusions.The inclusions of HSS produced by CSP are mainly spherical Al-Ca-O and CaS,while the inclusions in the traditional HSS are TiN+AI2O3+MnS with sharp edges and corners.Based on these results,the influence of composition,shape and distribution of inclusions in HSS on HIDC and the mechanism of HIDC from the perspective of inclusions were analyzed and discussed. 展开更多
关键词 Compact strip production Hot stamping steel-Hydrogeinduced delayed cracking INCLUSION Slow strain rate tensile test
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部