期刊文献+
共找到1,547篇文章
< 1 2 78 >
每页显示 20 50 100
Effect of heat treatment on tensile deformation behavior of Ni-Co film/Fe substrate systems 被引量:1
1
作者 张敏捷 潘勇 +3 位作者 周兆锋 李玮 惠建科 雷维新 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1613-1619,共7页
The effects of heat treatment on microstructure and tension property of Ni-Co film/Fe substrate systems were investigated. The deformation and fracture morphologies of Ni-Co films/Fe substrate systems were studied by ... The effects of heat treatment on microstructure and tension property of Ni-Co film/Fe substrate systems were investigated. The deformation and fracture morphologies of Ni-Co films/Fe substrate systems were studied by in-situ scanning electron microscopy(in-situ SEM)before and after heat treatment.The results show that a Ni-Co/Fe diffusion layer appears between the film and substrate after heat treatment;the elongation of film/substrate system increases with increasing the heat treatment temperature. Both the strength and ductility of the film/substrate system are preferable when heat treatment temperature is 650 o C,meanwhile the maximum elongation is up to 46%.During tensile deformation,the deformation behaviors of Ni-Co film/Fe substrate are quite different before and after heat treatment.The samples after heat treatment went through the progress of holes’emergence,growth and extension,whereas the samples without heat treatment accompanied with no holes,just cracked instead,showing that appropriate heat treatment is helpful to improve the toughness of material,and mechanical properties. 展开更多
关键词 heat treatment Ni-Co alloy tensile deformation FRACTURE
下载PDF
A Study of Tensile Strength Tests of Arborous Species Root System in Forest Engineering Technique of Shallow Landslide 被引量:6
2
作者 YANG Yonghong LIU Shuzhen +1 位作者 WANG Chenghua TANG Chuan 《Wuhan University Journal of Natural Sciences》 CAS 2006年第4期892-896,共5页
One experiment was conducted, through tensile tests of Albazzia and Eucalypt roots culled from the fields. The other experiment was conducted, by testing anti-drawing strength of these root systems in the Albazzia and... One experiment was conducted, through tensile tests of Albazzia and Eucalypt roots culled from the fields. The other experiment was conducted, by testing anti-drawing strength of these root systems in the Albazzia and Eucalypt lands. These two experiments had an aim to give insights into the maximum tensile strength and anti-drawing strength of the root systems. Results indicated that the maximum tensile strength of root system is in an exponential relation with the diameter of root system while the maximum tensile strength is positively correlative with the diameter of root system. Anti-drawing force of root system together with root diameter, length, and soil bulk density are folded into a regression equation in an attempt to figure out the static friction coefficient between root system and its ambient soil. 展开更多
关键词 root system tensile strength anti-drawing strength tensile force
下载PDF
Exploring an eco-friendly approach to improve soil tensile behavior and cracking resistance 被引量:1
3
作者 Lin Li Chao-Sheng Tang +5 位作者 Jin-Jian Xu Yao Wei Zhi-Hao Dong Bo Liu Xi-Ying Zhang Bin Shi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4272-4284,共13页
Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey so... Soil tensile strength is a critical parameter governing the initiation and propagation of tensile cracking.This study proposes an eco-friendly approach to improve the tensile behavior and crack resistance of clayey soils.To validate the feasibility and efficacy of the proposed approach,direct tensile tests were employed to determine the tensile strength of the compacted soil with different W-OH treatment concentrations and water contents.Desiccation tests were also performed to evaluate the effectiveness of W-OH treatment in enhancing soil tensile cracking resistance.During this period,the effects of W-OH treatment concentration and water content on tensile properties,soil suction and microstructure were investigated.The tensile tests reveal that W-OH treatment has a significant impact on the tensile strength and failure mode of the soil,which not only effectively enhances the tensile strength and failure displacement,but also changes the brittle failure behavior into a more ductile quasi-brittle failure behavior.The suction measurements and mercury intrusion porosimetry(MIP)tests show that W-OH treatment can slightly reduce soil suction by affecting skeleton structure and increasing macropores.Combined with the microstructural analysis,it becomes evident that the significant improvement in soil tensile behavior through W-OH treatment is mainly attributed to the W-OH gel's ability to provide additional binding force for bridging and encapsulating the soil particles.Moreover,desiccation tests demonstrate that W-OH treatment can significantly reduce or even inhibit the formation of soil tensile cracking.With the increase of W-OH treatment concentration,the surface crack ratio and total crack length are significantly reduced.This study enhances a fundamental understanding of eco-polymer impacts on soil mechanical properties and provides valuable insight into their potential application for improving soil crack resistance. 展开更多
关键词 Clayey soil tensile strength Eco-friendly approach Direct tensile test Desiccation cracking Crack resistance
下载PDF
Tensile strength and failure behavior of rock-mortar interfaces: Direct and indirect measurements 被引量:1
4
作者 Ghasem Shams Patrice Rivard Omid Moradian 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期41-55,共15页
The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism... The tensile strength at the rock-concrete interface is one of the crucial factors controlling the failure mechanisms of structures,such as concrete gravity dams.Despite the critical importance of the failure mechanism and tensile strength of rock-concrete interfaces,understanding of these factors remains very limited.This study investigated the tensile strength and fracturing processes at rock-mortar interfaces subjected to direct and indirect tensile loadings.Digital image correlation(DIC)and acoustic emission(AE)techniques were used to monitor the failure mechanisms of specimens subjected to direct tension and indirect loading(Brazilian tests).The results indicated that the direct tensile strength of the rock-mortar specimens was lower than their indirect tensile strength,with a direct/indirect tensile strength ratio of 65%.DIC strain field data and moment tensor inversions(MTI)of AE events indicated that a significant number of shear microcracks occurred in the specimens subjected to the Brazilian test.The presence of these shear microcracks,which require more energy to break,resulted in a higher tensile strength during the Brazilian tests.In contrast,microcracks were predominantly tensile in specimens subjected to direct tension,leading to a lower tensile strength.Spatiotemporal monitoring of the cracking processes in the rock-mortar interfaces revealed that they show AE precursors before failure under the Brazilian test,whereas they show a minimal number of AE events before failure under direct tension.Due to different microcracking mechanisms,specimens tested under Brazilian tests showed lower roughness with flatter fracture surfaces than those tested under direct tension with jagged and rough fracture surfaces.The results of this study shed light on better understanding the micromechanics of damage in the rock-concrete interfaces for a safer design of engineering structures. 展开更多
关键词 Rock-mortar Rock-concrete Moment tensor inversion(MTI) Acoustic emission(AE) Digital image correlation(DIC) tensile strength Direct tensile test Brazilian test
下载PDF
Pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy for activating water and urea oxidation 被引量:1
5
作者 Guangfu Qian Wei Chen +5 位作者 Jinli Chen Li Yong Gan Tianqi Yu Miaojing Pan Xiaoyan Zhuo Shibin Yin 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期684-694,共11页
Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electr... Exploitation of oxygen evolution reaction(OER)and urea oxidation reaction(UOR)catalysts with high activity and stability at large current density is a major challenge for energy-saving H_(2) production in water electrolysis.Herein,we use the pyridinic-N doping carbon layers coupled with tensile strain of FeNi alloy activated by NiFe_(2)O_(4)(FeNi/NiFe_(2)O_(4)@NC)for efficiently increasing the performance of water and urea oxidation.Due to the tensile strain effect on FeNi/NiFe_(2)O_(4)@NC,it provides a favorable modulation on the electronic properties of the active center,thus enabling amazing OER(η_(100)=196 mV)and UOR(E_(10)=1.32 V)intrinsic activity.Besides,the carbon-coated layers can be used as armor to prevent FeNi alloy from being corroded by the electrolyte for enhancing the OER/UOR stability at large current density,showing high industrial practicability.This work thus provides a simple way to prepare high-efficiency catalyst for activating water and urea oxidation. 展开更多
关键词 Carbon-encapsulated tensile strain Catalyst Oxygen evolution reaction Urea oxidation reaction
下载PDF
A universal direct tensile testing method for measuring the tensile strength of rocks
6
作者 Yang Wu Jianfeng Liu +5 位作者 Zhide Wu Junjie Liu Yonghui Zhao Huining Xu Jinbing Wei Wen Zhong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1443-1451,共9页
There is limited applicability to the current method for testing the direct tensile strength of rocks because it places stringent requirements on the testing equipment.This work suggests a universal method based on th... There is limited applicability to the current method for testing the direct tensile strength of rocks because it places stringent requirements on the testing equipment.This work suggests a universal method based on the‘‘compression-to-tensiono idea in response to these difficulties.By applying pressure,this technique makes it possible to test the tensile strength of rocks directly with any conventional compression test machines.Granite was utilized as the test material in order to validate this suggested testing method,and the results showed what follows.Upon determining the true fracture area through digital reconstruction,an average calculated tensile strength of 5.97 MPa with a Cvof 0.04 was obtained.There is a positive correlation between tensile strength and the joint roughness coefficient(JRC)of the failure surface.The aggregation mode of AE events with the loading process conforms to the damage characteristics of rock tensile failure.The direct tensile testing method proposed in this study not only has high universality but also produces test results with outstanding consistency.Additionally,factors influencing the results of the tensile test are pointed out,and recommendations for optimizing the suggested testing method are offered. 展开更多
关键词 ROCKS Direct tensile strength GRANITE Acoustic emission JRC
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
7
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing MICROSTRUCTURE tensile properties
下载PDF
Strengthening effect of prefabrication(10-12)tensile twinning on AZ80+0.4%Ce magnesium alloy and inhibition mechanism of discontinuous precipitation
8
作者 Zhen Wang Xi Zhao +5 位作者 Zhimin Zhang Yaojin Wu Kai Chen Xianwei Ren Dengkui Wang Wei Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1918-1930,共13页
This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.3... This paper provided an effective method to further improve the mechanical properties of the AZ80+0.4%Ce magnesium alloy wheel spoke.The effect of high strength and ductility was obtained with a yield strength of 295.36 MPa,an elongation of 10%,by the combination of pre-deformation(7%deformation)and two-stage aging treatment(120℃/9 h+175℃/24 h).The evolution of the microstructure and properties of the alloy was explored under the coupling conditions of different pre-deformation degrees and multi-stage aging.The results show that,pre-deformation introduced a large number of(1012)tensile twinning and dislocations,which greatly promoted the probability of continuous precipitates(CPs)appearing.On the contrary,the discontinuous precipitates(DPs)were limited by the vertical and horizontal twin structure.As a result,the pre-nucleation method of two-stage aging increased the proportion of CPs by 34%-38%.Owing to the DPs was effectively suppressed,the alloy's yield strength has been greatly improved.Besides,under multi-stage aging,the twin boundaries induce protruding nucleation to form static recrystallization by hindering the migration of dislocations,and the matrix swallows the twins,then the texture gradually tilts from the two poles to the basal plane.As an important supplement,the grain refinement and oblique texture promoted the improvement of the yield strength of the component. 展开更多
关键词 Magnesium alloy Pre-deformed Two-stage aging tensile twinning Continuous precipitates Texture
下载PDF
Effect of brazing temperature on microstructure and tensile strength ofγ-TiAl joint vacuum brazed with micro-nano Ti−Cu−Ni−Nb−Al−Hf filler
9
作者 Li LI Yu-tong CHEN +3 位作者 Lei-xin YUAN Fen LUO Zhi-xue FENG Xiao-qiang LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2563-2574,共12页
A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the rel... A novel micro-nano Ti−10Cu−10Ni−8Al−8Nb−4Zr−1.5Hf filler was used to vacuum braze Ti−47Al−2Nb−2Cr−0.15B alloy at 1160−1220℃ for 30 min.The interfacial microstructure and formation mechanism of TiAl joints and the relationships among brazing temperature,interfacial microstructure and joint strength were emphatically investigated.Results show that the TiAl joints brazed at 1160 and 1180℃ possess three interfacial layers and mainly consist of α_(2)-Ti_(3)Al,τ_(3)-Al_(3)NiTi_(2) and Ti_(2)Ni,but the brazing seams are no longer layered and Ti_(2)Ni is completely replaced by the uniformly distributed τ_(3)-Al_(3)NiTi_(2) at 1200 and 1220℃ due to the destruction of α_(2)-Ti_(3)Al barrier layer.This transformation at 1200℃ obviously improves the tensile strength of the joint and obtains a maximum of 343 MPa.Notably,the outward diffusion of Al atoms from the dissolution of TiAl substrate dominates the microstructure evolution and tensile strength of the TiAl joint at different brazing temperatures. 展开更多
关键词 γ-TiAl alloy micro-nano filler vacuum brazing interfacial microstructure tensile strength
下载PDF
Microstructural evolution and hot tensile behavior of Mg−3Zn−0.5Zr alloy subjected to multi-pass friction stir processing
10
作者 Ji WANG Rui-dong FU +5 位作者 Tian-xiang HU Yi-jun LI Yue LIU Zhi-hua ZHU Shi-de LI Zhe-feng XU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3615-3628,共14页
The microstructures and hot tensile behaviors of ZK30 alloys subjected to single-and multi-pass friction stir processing(FSP)were systematically investigated.Following single-pass FSP(S-FSP),coarse grains underwent re... The microstructures and hot tensile behaviors of ZK30 alloys subjected to single-and multi-pass friction stir processing(FSP)were systematically investigated.Following single-pass FSP(S-FSP),coarse grains underwent refinement to 1−2μm,with a distinct basal texture emerging in the stir zone(SZ).Additionally,second-phase particles were fragmented,dispersed,and partially dissolved.Multi-pass FSP(M-FSP)further enhanced the homogeneity of the microstructure,reduced texture intensity differences,and decreased the fraction of second-phase particles by 50%.Both S-FSP and M-FSP SZs demonstrated superplasticity at strain rates below 1×10^(−3)s^(−1)and at temperatures of 250−350℃.The S-FSP SZ exhibited an elongation of 390%at 250℃and 1×10^(−4)s^(−1),while the M-FSP SZ achieved an elongation of 406%at 350℃and 1×10^(−3)s^(−1).The superplastic deformation of SZ was co-dominated by grain boundary sliding(GBS)and the solute-drag mechanism in S-FSP and mainly by GBS in M-FSP. 展开更多
关键词 ZK30 alloys multi-pass friction stir processing SUPERPLASTICITY microstructure hot tensile behavior
下载PDF
Microstructure evolution and tensile behavior of balanced Al−Mg−Si alloy with various homogenization parameters
11
作者 Dong JIN Hong-ying LI +5 位作者 Zhi-xiang ZHU Chang-long YANG Yao-jun MIAO Chao XU Bao-an CHEN Zhen LIU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第11期3536-3553,共18页
The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,... The effects of homogenization parameters on the microstructure evolution and tensile behavior of a balanced Al−Mg−Si alloy were investigated using the optical microscope,scanning electron microscope,X-ray diffraction,electron probe microanalyzer,differential scanning calorimetry,electrical conductivity test,and tensile test.The results show that Mg_(2)Si andβ-AlFeSi are the main intermetallic compounds in the as-cast structure,and Mg solute microsegregation is predominant inside the dendrite cell.The prediction of the full dissolution time of Mg_(2)Si by a kinetic model is consistent with the experiment.Theβ-AlFeSi in the alloy exhibits high thermal stability and mainly undergoes dissolution and coarsening during homogenization at 560℃,and only a small portion is converted toα-AlFeSi.The optimal homogenization parameters are determined as 560℃and 360 min,when considering the evolution of microstructure and resource savings.Both the strength and ductility of the alloy increased after homogenization. 展开更多
关键词 Al−Mg−Si alloy HOMOGENIZATION kinetic model Fe-bearing phase tensile behavior
下载PDF
Tensile Strain Capacity Prediction of Engineered Cementitious Composites (ECC) Using Soft Computing Techniques
12
作者 Rabar H.Faraj Hemn Unis Ahmed +2 位作者 Hardi Saadullah Fathullah Alan Saeed Abdulrahman Farid Abed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2925-2954,共30页
Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is presen... Plain concrete is strong in compression but brittle in tension,having a low tensile strain capacity that can significantly degrade the long-term performance of concrete structures,even when steel reinforcing is present.In order to address these challenges,short polymer fibers are randomly dispersed in a cement-based matrix to forma highly ductile engineered cementitious composite(ECC).Thismaterial exhibits high ductility under tensile forces,with its tensile strain being several hundred times greater than conventional concrete.Since concrete is inherently weak in tension,the tensile strain capacity(TSC)has become one of the most extensively researched properties.As a result,developing a model to predict the TSC of the ECC and to optimize the mixture proportions becomes challenging.Meanwhile,the effort required for laboratory trial batches to determine the TSC is reduced.To achieve the research objectives,five distinct models,artificial neural network(ANN),nonlinear model(NLR),linear relationship model(LR),multi-logistic model(MLR),and M5P-tree model(M5P),are investigated and employed to predict the TSCof ECCmixtures containing fly ash.Data from115 mixtures are gathered and analyzed to develop a new model.The input variables include mixture proportions,fiber length and diameter,and the time required for curing the various mixtures.The model’s effectiveness is evaluated and verified based on statistical parameters such as R2,mean absolute error(MAE),scatter index(SI),root mean squared error(RMSE),and objective function(OBJ)value.Consequently,the ANN model outperforms the others in predicting the TSC of the ECC,with RMSE,MAE,OBJ,SI,and R2 values of 0.42%,0.3%,0.33%,0.135%,and 0.98,respectively. 展开更多
关键词 Engineered cementitious composites fly ash curing time tensile strain capacity MODELING
下载PDF
Effect of slow shot speed on externally solidified crystal,porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy
13
作者 Wen-ning Liu Wei Zhang +6 位作者 Peng-yue Wang Yi-xian Liu Xiang-yi Jiao Ao-xiang Wan Cheng-gang Wang Guo-dong Tong Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第1期11-19,共9页
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi... The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%). 展开更多
关键词 hypoeutectic Al-Si alloy high pressure die casting POROSITY externally solidified crystal tensile property
下载PDF
Effect of Process Parameters on the Agglomeration Behavior and Tensile Response of Graphene Reinforced Magnesium Matrix Composites Based on Molecular Dynamics Model
14
作者 Chentong Zhao Jiming Zhou +2 位作者 Xujiang Chao Su Wang Lehua Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第12期2453-2469,共17页
The mechanical properties of graphene reinforced composites are often hampered by challenges related to the dispersion and aggregation of graphene within the matrix.This paper explores the mechanism of cooling rate,pr... The mechanical properties of graphene reinforced composites are often hampered by challenges related to the dispersion and aggregation of graphene within the matrix.This paper explores the mechanism of cooling rate,process temperature,and process pressure’s influence on the agglomeration behavior of graphene and the tensile response of composites from a computer simulation technology,namely molecular dynamics.Our findings reveal that the cooling rate exerts minimal influence on the tensile response of composites.Conversely,processing temperature significantly affects the degree of graphene aggregation,with higher temperatures leading to the formation of larger-sized graphene clusters.In contrast,processing pressure exhibits negligible impact on the degree of graphene aggregation,and increasing pressure effectively mitigates the formation of large-sized graphene clusters.Moreover,we elucidate the intrinsic factors governing the mechanical response to variations in processing parameters.Notably,we observe that the stretching process facilitates the decomposition of large-sized graphene clusters into smaller ones.This research contributes to the advancement of lightweight metal matrix composites by offering insights into optimizing processing parameters.Additionally,it provides crucial theoretical underpinnings for developing high-performance graphene-reinforced composites. 展开更多
关键词 Agglomeration behavior GNPs/Mg composite tensile response molecular dynamics
下载PDF
Tensile Shock Physics in Compressible Thermoviscoelastic Solid Medium
15
作者 Karan S. Surana Elie Abboud 《Applied Mathematics》 2024年第10期719-744,共26页
This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorpo... This paper addresses tensile shock physics in thermoviscoelastic (TVE) solids without memory. The mathematical model is derived using conservation and balance laws (CBL) of classical continuum mechanics (CCM), incorporating the contravariant second Piola-Kirchhoff stress tensor, the covariant Green’s strain tensor, and its rates up to order n. This mathematical model permits the study of finite deformation and finite strain compressible deformation physics with an ordered rate dissipation mechanism. Constitutive theories are derived using conjugate pairs in entropy inequality and the representation theorem. The resulting mathematical model is both thermodynamically and mathematically consistent and has closure. The solution of the initial value problems (IVPs) describing evolutions is obtained using a variationally consistent space-time coupled finite element method, derived using space-time residual functional in which the local approximations are in hpk higher-order scalar product spaces. This permits accurate description problem physics over the discretization and also permits precise a posteriori computation of the space-time residual functional, an accurate measure of the accuracy of the computed solution. Model problem studies are presented to demonstrate tensile shock formation, propagation, reflection, and interaction. A unique feature of this research is that tensile shocks can only exist in solid matter, as their existence requires a medium to be elastic (presence of strain), which is only possible in a solid medium. In tensile shock physics, a decrease in the density of the medium caused by tensile waves leads to shock formation ahead of the wave. In contrast, in compressive shocks, an increase in density and the corresponding compressive waves result in the formation of compression shocks behind of the wave. Although these are two similar phenomena, they are inherently different in nature. To our knowledge, this work has not been reported in the published literature. 展开更多
关键词 tensile Shock Physics tensile Waves Elastic Viscoelastic Solids Variationally Consistent Space-Time Coupled Space-Time Residual Functional A Posteriori Finite Element Method Wave Speed Conservation and Balance Laws
下载PDF
Effects of heterogeneous microstructure evolution on the tensile and fracture toughness properties of extruded AZ31B alloys
16
作者 ShengXiong Tang Soya Nishimoto +1 位作者 Koji Hagihara Michiaki Yamasaki 《Journal of Magnesium and Alloys》 CSCD 2024年第10期4126-4139,共14页
This study aims to investigate the extrusion temperature effects on the development of heterogeneous microstructures and mechanical properties,focusing on their impact on the fracture toughness of AZ31B alloys.Magnesi... This study aims to investigate the extrusion temperature effects on the development of heterogeneous microstructures and mechanical properties,focusing on their impact on the fracture toughness of AZ31B alloys.Magnesium AZ31B(Mg-3wt%Al-1wt%Zn)alloys with high strength and reasonable fracture toughness,featuring heterogeneous microstructures,were fabricated via warm/hot extrusion at temperatures ranging from 523 to 723 K.The AZ31B alloy extruded at 523 K was bimodally grained into coarse worked grains with high Kernel average misorientation(KAM)values and fine dynamically recrystallized(DRXed)grains(<10μm)with intermediate KAM values.The 523 K-extruded alloy exhibited a high tensile yield strength of∼280 MPa and fracture toughness KJIC of∼26 MPa·m^(1/2).Conversely,the 723 K-extruded AZ31B alloy was trimodally grained into a small amount of worked grains,fine DRXed grains,and coarse DRXed grains(>10μm)with low KAM values.The 723 K-extruded alloy exhibited low tensile yield strength but a high KJIC value of∼36 MPa·m^(1/2)owing to the high energy dissipation for crack extension in the coarse DRXed grains. 展开更多
关键词 Magnesium alloy AZ31B tensile property Fracture toughness Bimodal/trimodal microstructure
下载PDF
Effect of heat treatment on microstructure and tensile properties of A356 alloys 被引量:27
17
作者 彭继华 唐小龙 +1 位作者 何健亭 许德英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1950-1956,共7页
Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment ... Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment is a short time treatment(solution at 550 ℃ for 2 h + aging at 170 ℃ for 2 h).The effects of heat treatment on microstructure and tensile properties of the Al-7%Si-0.3%Mg alloys were investigated by optical microscopy,scanning electronic microscopy and tension test.It is found that a 2 h solution at 550 ℃ is sufficient to make homogenization and saturation of magnesium and silicon in α(Al) phase,spheroid of eutectic Si phase.Followed by solution,a 2 h artificial aging at 170 ℃ is almost enough to produce hardening precipitates.Those samples treated with T6 achieve the maximum tensile strength and fracture elongation.With short time treatment(ST),samples can reach 90% of the maximum yield strength,95% of the maximum strength,and 80% of the maximum elongation. 展开更多
关键词 Al-Si casting alloys heat treatment tensile property microstructural evolution
下载PDF
Determination of local constitutive behavior and simulation on tensile test of 2219-T87 aluminum alloy GTAW joints 被引量:6
18
作者 李艳军 李权 +5 位作者 吴爱萍 麻宁绪 王国庆 Hidekazu MURAKAWA 鄢东洋 吴会强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第9期3072-3079,共8页
The local and global mechanical responses of gas tungsten arc welds(GTAW) of a 2219-T87 aluminum alloy were investigated with experiment and numerical simulation.Digital image correlation(DIC) was used to access t... The local and global mechanical responses of gas tungsten arc welds(GTAW) of a 2219-T87 aluminum alloy were investigated with experiment and numerical simulation.Digital image correlation(DIC) was used to access the local strain fields in transversely loaded welds and to determine the local stress-strain curves of various regions in the joint.The results show that the DIC method is efficient to acquire the local stress-strain curves but the curves of harder regions are incomplete because the stress and strain ranges are limited by the weakest region.With appropriate extrapolation,the complete local stress-strain curves were acquired and proved to be effective to predict the tensile behavior of the welded joint.During the tensile process,the fracture initiates from the weld toes owing to their plastic strain concentrations and then propagates along the fusion line,finally propagates into the partially melted zone(PMZ). 展开更多
关键词 aluminum alloy tensile behavior digital image correlation constitutive behavior welded joint
下载PDF
Microstructure and tensile properties of containerless near-isothermally forged TiAl alloys 被引量:5
19
作者 贺卫卫 汤慧萍 +3 位作者 刘海彦 贾文鹏 刘咏 杨鑫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2605-2609,共5页
Ti-47Al-2Nb-2Cr-0.4(W, Mo) (mole fraction, %) alloy ingot fabricated using vacuum consumable melting was containerless near-isothermally forged, and the high temperature forgeability, microstructure and tensile pr... Ti-47Al-2Nb-2Cr-0.4(W, Mo) (mole fraction, %) alloy ingot fabricated using vacuum consumable melting was containerless near-isothermally forged, and the high temperature forgeability, microstructure and tensile properties were investigated. The results show that the TiAl ingot exhibits good heat workability during containerless near-isothermally forging process, and there are not evident cracks on the surface of as-forged TiAl pancake with a total deformation degree of 60%. The microstructure of the TiAl ingot appears to be typical nearly-lamellar(NL), comprising a great amount of lamellar colonies (α2+γ) and a few equiaxed γ grains. After near-isothermally forging, the as-forged pancake shows primarily fine equiaxed γ grains with an average grain size of 20 μm and some broken lamellar pieces, and some bent lamellas still exist in the hard-deformation zone. Tensile tests at room temperature show that ultimate tensile strength increases from 433 MPa to 573 MPa after forging due to grain refinement effect. 展开更多
关键词 TiAl alloy MICROSTRUCTURE tensile property containerless near-isothermal forging grain refinement
下载PDF
Effects of weld reinforcement on tensile behavior and mechanical properties of 2219-T87 aluminum alloy TIG welded joints 被引量:6
20
作者 王国庆 李权 +4 位作者 李艳军 吴爱萍 麻宁绪 鄢东洋 吴会强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期10-16,共7页
Tungsten inert gas (TIG) welded joints for 2219-T87 aluminum alloy are often used in the fuel tanks of large launch vehicles. Because of the massive loads these vehicles carry, dealing with weld reinforcement on TIG... Tungsten inert gas (TIG) welded joints for 2219-T87 aluminum alloy are often used in the fuel tanks of large launch vehicles. Because of the massive loads these vehicles carry, dealing with weld reinforcement on TIG joints represents an important issue in their manufacturing and strength evaluation. Experimental and numerical simulation methods were used to investigate the effects of weld toe shape and weld toe position on the tensile behavior and mechanical properties of these joints. The simulation results indicated that the relative difference in elongation could be as large as 96.9% caused by the difference in weld toe shape. The joints with weld toes located in the weld metal or in the partially melted zone (PMZ) exhibited larger elongation than joints with weld toes located at the juncture of the weld metal and the PMZ. 展开更多
关键词 tensile strength weld reinforcement 2219-T87 aluminum alloy TIG welding digital image correlation (DIC) technique
下载PDF
上一页 1 2 78 下一页 到第
使用帮助 返回顶部