期刊文献+
共找到23,275篇文章
< 1 2 250 >
每页显示 20 50 100
Application of Convolutional Neural Networks in Classification of GBM for Enhanced Prognosis
1
作者 Rithik Samanthula 《Advances in Bioscience and Biotechnology》 CAS 2024年第2期91-99,共9页
The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treat... The lethal brain tumor “Glioblastoma” has the propensity to grow over time. To improve patient outcomes, it is essential to classify GBM accurately and promptly in order to provide a focused and individualized treatment plan. Despite this, deep learning methods, particularly Convolutional Neural Networks (CNNs), have demonstrated a high level of accuracy in a myriad of medical image analysis applications as a result of recent technical breakthroughs. The overall aim of the research is to investigate how CNNs can be used to classify GBMs using data from medical imaging, to improve prognosis precision and effectiveness. This research study will demonstrate a suggested methodology that makes use of the CNN architecture and is trained using a database of MRI pictures with this tumor. The constructed model will be assessed based on its overall performance. Extensive experiments and comparisons with conventional machine learning techniques and existing classification methods will also be made. It will be crucial to emphasize the possibility of early and accurate prediction in a clinical workflow because it can have a big impact on treatment planning and patient outcomes. The paramount objective is to not only address the classification challenge but also to outline a clear pathway towards enhancing prognosis precision and treatment effectiveness. 展开更多
关键词 GLIOBLASTOMA Machine Learning Artificial Intelligence neural networks Brain Tumor Cancer tensorflow LAYERS CYTOARCHITECTURE Deep Learning Deep neural network Training Batches
下载PDF
Analysis of Factors Related to Vasovagal Response in Apheresis Blood Donors and the Establishment of Prediction Model Based on BP Neural Network Algorithm
2
作者 Xin Hu Hua Xu Fengqin Li 《Journal of Clinical and Nursing Research》 2024年第6期276-283,共8页
Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to i... Objective:To analyze the factors related to vessel vasovagal reaction(VVR)in apheresis donors,establish a mathematical model for predicting the correlation factors and occurrence risk,and use the prediction model to intervene in high-risk VVR blood donors,improve the blood donation experience,and retain blood donors.Methods:A total of 316 blood donors from the Xi'an Central Blood Bank from June to September 2022 were selected to statistically analyze VVR-related factors.A BP neural network prediction model is established with relevant factors as input and DRVR risk as output.Results:First-time blood donors had a high risk of VVR,female risk was high,and sex difference was significant(P value<0.05).The blood pressure before donation and intergroup differences were also significant(P value<0.05).After training,the established BP neural network model has a minimum RMS error of o.116,a correlation coefficient R=0.75,and a test model accuracy of 66.7%.Conclusion:First-time blood donors,women,and relatively low blood pressure are all high-risk groups for VVR.The BP neural network prediction model established in this paper has certain prediction accuracy and can be used as a means to evaluate the risk degree of clinical blood donors. 展开更多
关键词 Vasovagal response Related factors Prediction bp neural network
下载PDF
A Human Body Posture Recognition Algorithm Based on BP Neural Network for Wireless Body Area Networks 被引量:10
3
作者 Fengye Hu Lu Wang +2 位作者 Shanshan Wang Xiaolan Liu Gengxin He 《China Communications》 SCIE CSCD 2016年第8期198-208,共11页
Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been propos... Human body posture recognition has attracted considerable attention in recent years in wireless body area networks(WBAN). In order to precisely recognize human body posture,many recognition algorithms have been proposed.However, the recognition rate is relatively low. In this paper, we apply back propagation(BP) neural network as a classifier to recognizing human body posture, where signals are collected from VG350 acceleration sensor and a posture signal collection system based on WBAN is designed. Human body signal vector magnitude(SVM) and tri-axial acceleration sensor data are used to describe the human body postures. We are able to recognize 4postures: Walk, Run, Squat and Sit. Our posture recognition rate is up to 91.67%. Furthermore, we find an implied relationship between hidden layer neurons and the posture recognition rate. The proposed human body posture recognition algorithm lays the foundation for the subsequent applications. 展开更多
关键词 wireless body area networks bp neural network signal vector magnitude posture recognition rate
下载PDF
BP neural networks and random forest models to detect damage by Dendrolimus punctatus Walker 被引量:6
4
作者 Zhanghua Xu Xuying Huang +4 位作者 Lu Lin Qianfeng Wang Jian Liu Kunyong Yu Chongcheng Chen 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第1期107-121,共15页
The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four exper... The construction of a pest detection algorithm is an important step to couple"ground-space"characteristics,which is also the basis for rapid and accurate monitoring and detection of pest damage.In four experimental areas in Sanming City,Jiangle County,Sha County and Yanping District in Fujian Province,sample data on pest damage in 182 sets of Dendrolimus punctatus were collected.The data were randomly divided into a training set and testing set,and five duplicate tests and one eliminating-indicator test were done.Based on the characterization analysis of the host for D.punctatus damage,seven characteristic indicators of ground and remote sensing including leaf area index,standard error of leaf area index(SEL)of pine forest,normalized difference vegetation index(NDVI),wetness from tasseled cap transformation(WET),green band(B2),red band(B3),near-infrared band(B4)of remote sensing image are obtained to construct BP neural networks and random forest models of pest levels.The detection results of these two algorithms were comprehensively compared from the aspects of detection precision,kappa coefficient,receiver operating characteristic curve,and a paired t test.The results showed that the seven indicators all were responsive to pest damage,and NDVI was relatively weak;the average pest damage detection precision of six tests by BP neural networks was 77.29%,the kappa coefficient was 0.6869 and after the RF algorithm,the respective values were 79.30%and 0.7151,showing that the latter is more optimized,but there was no significant difference(p>0.05);the detection precision,kappa coefficient and AUC of the RF algorithm was higher than the BP neural networks for three pest levels(no damage,moderate damage and severe damage).The detection precision and AUC of BP neural networks were a little higher for mild damage,but the difference was not significant(p>0.05)except for the kappa coefficient for the no damage level(p<0.05).An"over-fitting"phenomenon tends to occur in BP neural networks,while RF method is more robust,providing a detection effect that is better than the BP neural networks.Thus,the application of the random forest algorithm for pest damage and multilevel dispersed variables is thus feasible and suggests that attention to the proportionality of sample data from various categories is needed when collecting data. 展开更多
关键词 bp neural networks Detection precision Kappa coefficient Pine moth Random forest ROC curve
下载PDF
Load Reduction Test Method of Similarity Theory and BP Neural Networks of Large Cranes 被引量:4
5
作者 YANG Ruigang DUAN Zhibin +2 位作者 LU Yi WANG Lei XU Gening 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第1期145-151,共7页
Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solv... Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes. 展开更多
关键词 similarity theory bp neural network large bridge crane load reduction equivalent test method
下载PDF
Linearization Learning Method of BP Neural Networks 被引量:4
6
作者 Zhou Shaoqian Ding Lixin +1 位作者 Zhang Jian Tang Xinhua 《Wuhan University Journal of Natural Sciences》 CAS 1997年第1期37-41,共5页
Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple ... Feedforward multi layer neural networks have very strong mapping capability that is based on the non linearity of the activation function, however, the non linearity of the activation function can cause the multiple local minima on the learning error surfaces, which affect the learning rate and solving optimal weights. This paper proposes a learning method linearizing non linearity of the activation function and discusses its merits and demerits theoretically. 展开更多
关键词 bp neural networks activation function linearization method
下载PDF
HCl emission characteristics and BP neural networks prediction in MSW/coal co-fired fluidized beds 被引量:3
7
作者 CHIYong WENJun-ming +3 位作者 ZHANGDong-ping YANJian-hua NIMing-jiang CENKe-fa 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第4期699-704,共6页
The HCl emission characteristics of typical municipal solid waste(MSW) components and their mixtures have been investigated in a Φ150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed in... The HCl emission characteristics of typical municipal solid waste(MSW) components and their mixtures have been investigated in a Φ150 mm fluidized bed. Some influencing factors of HCl emission in MSW fluidized bed incinerator was found in this study. The HCl emission is increasing with the growth of bed temperature, while it is decreasing with the increment of oxygen concentration at furnace exit. When the weight percentage of auxiliary coal is increased, the conversion rate of Cl to HCl is increasing. The HCl emission is decreased, if the sorbent(CaO) is added during the incineration process. Based on these experimental results, a 14×6×1 three-layer BP neural networks prediction model of HCl emission in MSW/coal co-fired fluidized bed incinerator was built. The numbers of input nodes and hidden nodes were fixed on by canonical correlation analysis technique and dynamic construction method respectively. The prediction results of this model gave good agreement with the experimental results, which indicates that the model has relatively high accuracy and good generalization ability. It was found that BP neural network is an effectual method used to predict the HCl emission of MSW/coal co-fired fluidized bed incinerator. 展开更多
关键词 municipal solid waste(MSW) HCl emission fluidized bed bp neural networks prediction model
下载PDF
Designing of Commercial Bank Loans Risk Early Warning System Based on BP Neural Networks 被引量:1
8
作者 杨保安 季海 《Journal of China Textile University(English Edition)》 EI CAS 2000年第4期110-113,共4页
According to the index early warning method, a commercial bank loans risk early warning system based on BP neural networks is proposed. The warning signal is mainly involved with the financial situation signal of loan... According to the index early warning method, a commercial bank loans risk early warning system based on BP neural networks is proposed. The warning signal is mainly involved with the financial situation signal of loaning corporation. Except the structure description of the system structure the demonstration of attemptive designing is also elaborated. 展开更多
关键词 Index EARLY WARNING Method bp neural networks BANK LOANS risk management FINANCIAL SITUATION EARLY WARNING Signal
下载PDF
The Application of BP Neural Networks to Analysis the National Vulnerability 被引量:1
9
作者 Guodong Zhao Yuewei Zhang +2 位作者 Yiqi Shi Haiyan Lan Qing Yang 《Computers, Materials & Continua》 SCIE EI 2019年第2期421-436,共16页
Climate change is the main factor affecting the country’s vulnerability,meanwhile,it is also a complicated and nonlinear dynamic system.In order to solve this complex problem,this paper first uses the analytic hierar... Climate change is the main factor affecting the country’s vulnerability,meanwhile,it is also a complicated and nonlinear dynamic system.In order to solve this complex problem,this paper first uses the analytic hierarchy process(AHP)and natural breakpoint method(NBM)to implement an AHP-NBM comprehensive evaluation model to assess the national vulnerability.By using ArcGIS,national vulnerability scores are classified and the country’s vulnerability is divided into three levels:fragile,vulnerable,and stable.Then,a BP neural network prediction model which is based on multivariate linear regression is used to predict the critical point of vulnerability.The function of the critical point of vulnerability and time is established through multiple linear regression analysis to obtain the regression equation.And the proportion of each factor in the equation is established by using the partial least-squares regression to select the main factors affecting the country’s vulnerability,and using the neural network algorithm to perform the fitting.Lastly,the BP neural network prediction model is optimized by genetic algorithm to get the chaotic time series BP neural network prediction model.In order to verify the practicability of the model,Cambodia is selected to be an example to analyze the critical point of the national vulnerability index. 展开更多
关键词 Climate change bp neural networks national vulnerability GA-bp
下载PDF
Hydrodynamic Performance Analysis of a Submersible Surface Ship and Resistance Forecasting Based on BP Neural Networks 被引量:1
10
作者 Yuejin Wan Yuanhang Hou +3 位作者 Chao Gong Yuqi Zhang Yonglong Zhang Yeping Xiong 《Journal of Marine Science and Application》 CSCD 2022年第2期34-46,共13页
This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and divi... This paper investigated the resistance performance of a submersible surface ship(SSS)in different working cases and scales to analyze the hydrodynamic performance characteristics of an SSS at different speeds and diving depths for engineering applications.First,a hydrostatic resistance performance test of the SSS was carried out in a towing tank.Second,the scale effect of the hydrodynamic pressure coefficient and wave-making resistance was analyzed.The differences between the three-dimensional real-scale ship resistance prediction and numerical methods were explained.Finally,the advantages of genetic algorithm(GA)and neural network were combined to predict the resistance of SSS.Back propagation neural network(BPNN)and GA-BPNN were utilized to predict the SSS resistance.We also studied neural network parameter optimization,including connection weights and thresholds,using K-fold cross-validation.The results showed that when a SSS sails at low and medium speeds,the influence of various underwater cases on resistance is not obvious,while at high speeds,the resistance of water surface cases increases sharply with an increase in speed.After improving the weights and thresholds through K-fold cross-validation and GA,the prediction results of BPNN have high consistency with the actual values.The research results can provide a theoretical reference for the optimal design of the resistance of SSS in practical applications. 展开更多
关键词 Submersible surface ship K-fold cross-validation Scale effect Genetic algorithm bp neural network
下载PDF
Fault detection and diagnosis of permanent-magnetic DC motors based on current analysis and BP neural networks 被引量:1
11
作者 刘曼兰 朱春波 王铁成 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第3期266-270,共5页
In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural n... In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper. 展开更多
关键词 DC motor current analysis bp neural networks fault detection fault diagnosis
下载PDF
Application of New Type BP Neural Networks for Magnetic Measurement 被引量:1
12
作者 张旭 Che Rensheng +1 位作者 Kinouchi Y Luo Xiaochuan 《High Technology Letters》 EI CAS 2002年第2期83-86,共4页
Magnetic measurement is a typical inverse problem in Biomedical field. In this kind of problem we always need to locate the positions and moments of one or more magnetic dipoles. Although using the traditional methods... Magnetic measurement is a typical inverse problem in Biomedical field. In this kind of problem we always need to locate the positions and moments of one or more magnetic dipoles. Although using the traditional methods to solve this kind of inverse problem has all kinds of shortcomings, BPNN (Back Propagation Neural Networks) method can be used to solve this typical inverse problem fast enough for real time measurement. In the traditional BPNN method, gradient descent search method is performed for error propagation. In this paper the authors propose a new algorithm that Newton method is performed for error propagation. For the cost function is highly nonconvex in the magnetic measurement problem, the new kind of BPNN can get convergent results quickly and precisely. A simulation result for this method is also presented. 展开更多
关键词 magnetic measurement bp neural network gradient method Newton Gauss method
下载PDF
An Adaptive Sliding Mode Tracking Controller Using BP Neural Networks for a Class of Large-scale Nonlinear Systems
13
作者 刘子龙 田方 张伟军 《Journal of Shanghai Jiaotong university(Science)》 EI 2007年第6期753-758,共6页
A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that dece... A new type controller, BP neural-networks-based sliding mode controller is developed for a class of large-scale nonlinear systems with unknown bounds of high-order interconnections in this paper. It is shown that decentralized BP neural networks are used to adaptively learn the uncertainty bounds of interconnected subsystems in the Lyapunov sense, and the outputs of the decentralized BP neural networks are then used as the parameters of the sliding mode controller to compensate for the effects of subsystems uncertainties. Using this scheme, not only strong robustness with respect to uncertainty dynamics and nonlinearities can be obtained, but also the output tracking error between the actual output of each subsystem and the corresponding desired reference output can asymptotically converge to zero. A simulation example is presented to support the validity of the proposed BP neural-networks-based sliding mode controller. 展开更多
关键词 bp neural networks SLIDING mode control LARGE-SCALE nonlinear systems uncertainty dynamics
下载PDF
Color Reproduction on CRT Displays via BP Neural Networks Under Office Environment
14
作者 杨卫平 廖宁放 +3 位作者 柴冰华 胡中平 白力 栗兆剑 《Journal of Beijing Institute of Technology》 EI CAS 2003年第4期376-380,共5页
A CRT characterization method based on color appearance matching is presented. A matching between Munsell color chips and CRT charts was obtained in vision perceiver in typical office environment and viewing condition... A CRT characterization method based on color appearance matching is presented. A matching between Munsell color chips and CRT charts was obtained in vision perceiver in typical office environment and viewing condition by recommending. And neural networks were utilized to accomplish the color space conversion from CIE standard color space to CRT device color space. The neural networks related the color space conversion and color reproduction of soft/hard-copy directly to the influence of the illuminance and viewing condition in vision perceiver. The average color difference of training samples is 3.06 and that of testing samples is 5.17. The experiment results indicated that the neural networks can satisfy the requirements for the color appearance of hard-copy reproduction in CRT. 展开更多
关键词 CRT characterization cross-media color reproduction vision matching bp neural networks
下载PDF
OPTIMIZATION OF INJECTION MOLDING PROCESS BASED ON NUMERICAL SIMULATION AND BP NEURAL NETWORKS
15
作者 王玉 邢渊 阮雪榆 《Journal of Shanghai Jiaotong university(Science)》 EI 2001年第2期212-215,共4页
Plastic injection molding is a very complex process and its process planning has a direct influence on product quality and production efficiency. This paper studied the optimization of injection molding process by com... Plastic injection molding is a very complex process and its process planning has a direct influence on product quality and production efficiency. This paper studied the optimization of injection molding process by combining the numerical simulation with back-propagation(BP) networks. The BP networks are trained by the results of numerical simulation. The trained BP networks may:(1) shorten time for process planning;(2) optimize process parameters;(3) be employed in on-line quality control;(4) be integrated with knowledge-based system(KBS) and case-based reasoning(CBR) to make intelligent process planning of injection molding. 展开更多
关键词 injection molding process optimization bp neural networks numerical simulation
下载PDF
The Research and Application of BP Neural Networks in River-basin Water and Sediment
16
作者 Xu Quan-xi Engineer, Hydrology Bureau,Changjiang Water Resources Commission, Wuhan 430010,China 《人民长江》 北大核心 2001年第S1期53-56,共4页
Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall co... Based on the basic principles of BP artificial neural network model and the fundamental law of water and sediment yield in a river basin, a BP neural network model is developed by using observed data, with rainfall conditions serving as affecting factors. The model has satisfactory performance of learning and generalization and can be also used to assess the influence of human activities on water and sediment yield in a river basin. The model is applied to compute the runoff and sediment transmission at Xingshan, Bixi and Shunlixia stations. Comparison between the results from the model and the observed data shows that the model is basically reasonable and reliable. 展开更多
关键词 WATER and SEDIMENT yield in a RIVER-BASIN OBSERVED data WATER and SEDIMENT variation bp neural network model
下载PDF
The Prediction of Stock Prices Based on PCA and BP Neural Networks
17
作者 Xiaoping Yang 《Chinese Business Review》 2005年第5期64-68,共5页
There are many factors to influence stock prices indeed. The research method combining models and examples is applied to study how the factors affect stock prices here. Firstly, the principal component analysis is use... There are many factors to influence stock prices indeed. The research method combining models and examples is applied to study how the factors affect stock prices here. Firstly, the principal component analysis is used to deal with a set of variables as the input of a BP Neural Network. Therefore, not only is the number of variables less, but also most of the information of original variables is kept. Then, the BP Neural Network is established to analyze and predict stock prices. Finally, the analysis of Chinese stock market illustrates that the method predicting stock prices is satisfying and feasible. 展开更多
关键词 bp neural networks prediction PCA stock prices
下载PDF
Study on Remote Sensing of Water Depths Based on BP Artificial Neural Network 被引量:4
18
作者 王艳姣 张培群 +1 位作者 董文杰 张鹰 《Marine Science Bulletin》 CAS 2007年第1期26-35,共10页
A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Land... A momentum BP neural network model (MBPNNM) was constructed to retrieve the water depth information for the South Channel of the Yangtze River Estuary using the relationship between the reflectance derived from Landsat 7 satellite data and the water depth information. Results showed that MBPNNM, which exhibited a strong capability of nonlinear mapping, allowed the water depth information in the study area to be retrieved at a relatively high level of accuracy. Affected by the sediment concentration of water in the estuary, MBPNNM enabled the retrieval of water depth of less than 5 meters accurately. However, the accuracy was not ideal for the water depths of more than 10 meters. 展开更多
关键词 Yangtze River Estuary bp neural network water-depth remote sensing retrieval model
下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
19
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (bp model) OPTIMIZATION
下载PDF
BP-neural networks预测法在湛江港港口吞吐量预测中的应用
20
作者 李萌 陈绍永 《广东造船》 2010年第4期64-66,共3页
本文对港口吞吐量预测的方法进行了研究,分析了传统预测方法在实际应用中存在的问题,利用黑箱模型理论对湛江港近年吞吐量与建设投资额进行定性研究和定量检验,证明了港口吞吐量与建设投资额之间存在显著的正相关关系,并基于此提出基于B... 本文对港口吞吐量预测的方法进行了研究,分析了传统预测方法在实际应用中存在的问题,利用黑箱模型理论对湛江港近年吞吐量与建设投资额进行定性研究和定量检验,证明了港口吞吐量与建设投资额之间存在显著的正相关关系,并基于此提出基于BP-neural networks的预测方法,为湛江港港口吞吐量的预测提供了一种新的方法与途径。 展开更多
关键词 港口发展 港口吞吐量 预测技术 bp神经网络
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部