AIM: To evaluate the role of intestinal microflora in the effects of multi-herbal medicine on gene expression in the gut and liver. METHODS: The multi-herbal medicine Juzentaihoto (JTX) was administered to five ge...AIM: To evaluate the role of intestinal microflora in the effects of multi-herbal medicine on gene expression in the gut and liver. METHODS: The multi-herbal medicine Juzentaihoto (JTX) was administered to five germ-free mice and regular mice for 2 wk. Among the results of the comprehensive gene chip analysis of the intestine and liver, we featured heat shock proteins (HSPs) 70 and 105 because their gene expression changed only in the presence of microflora. Real-time RT-PCR was performed to confirm the expression levels of these HSP genes. To determine whether JTX acts directly on the HSP genes, sodium arsenite (SA) was used to induce the heat shock proteins directly. To examine the change of the intestinal microflora with administration of JTX, the terminal restriction fragment polymorphism (T-RFLP) method was used. To identify the changed bacteria, DNA sequencing was performed.documented by gene chip and real-time RT-PCR, changed with the administration of JTX in the regular mice but not in the germ-free mice. JTX did not suppress the direct induction of the HSPs by SA. T-RFLP suggested that JTX decreased unculturable bacteria and increased Lactobacillus johnsoni. These data suggested that JTX changed the intestinal microflora which, in turn, changed HSP gene expression.CONCLUSION: Intestinal microflora affects multi-herbal product JTX on the gene expression in the gut and liver.展开更多
To characterize the effects of pentachlorophenol (PCP) on the performance and microbial community of aerobic granular sludge in sequencing batch reactor (SBR), the web-based terminal restriction fragment length polymo...To characterize the effects of pentachlorophenol (PCP) on the performance and microbial community of aerobic granular sludge in sequencing batch reactor (SBR), the web-based terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT- PCR) techniques were used to explore the bacterial community structure. When PCP increased from 0 to 50 mg/L, the COD removal rate changed little, while the ammonia removal rate dropped from 100% to 64.9%. The results of molecular characterization showed t...展开更多
Objective To compare the bacterioplankton communities in streams exposed to pollution of different types. Methods The bacterioplankton communities in three selected heavily polluted streams were investigated by using ...Objective To compare the bacterioplankton communities in streams exposed to pollution of different types. Methods The bacterioplankton communities in three selected heavily polluted streams were investigated by using terminal‐restriction fragment length polymorphism (T‐RFLP) analysis in combination with 16S rRNA gene clone library analysis. Results Both T‐RFLP and 16S rRNA gene clone library revealed a great difference in bacterioplankton community composition in the different streams. Conclusion This work might provide some new insights into bioremediation of heavily polluted streams.展开更多
Four typical coastal sites(rocky shore,sandy shore,mud flat shore,and artificial harbor)at the Yellow Sea were chosen to investigate the spatial and seasonal variations in bacterial communities.This was accomplished b...Four typical coastal sites(rocky shore,sandy shore,mud flat shore,and artificial harbor)at the Yellow Sea were chosen to investigate the spatial and seasonal variations in bacterial communities.This was accomplished by using terminal restriction fragment length polymorphism(T-RFLP)analysis of PCR amplified 16S rDNA fragments.Two kinds of tetrameric restriction enzymes,HhaI and MspI,were used in the experiment to depict the bacterial community diversity in different marine environments.It was found that the community compositions digested by the two enzymes separately were different.However,the results of bacterial community diversity derived from them were similar.The MDA analysis results of T-RFLP profiles coming from HhaI and MspI both exhibited a significant seasonal community shift for bacteria and a relatively low spatial variation among the four locations.With HhaI as the sample,the pair wise Ttests also revealed that variations were minor between each pair of marine environments,with R ranging from 0.198 to 0.349.However,the bacterial community structure in the mud flat site depicted a larger difference than each of the other three sites(R ranging from 0.282 to 0.349).展开更多
To determine whether the functional stability of nitrification was correlated to a stable community structure of ammonia oxidizing bacteria(AOB)in a fullscale wastewater treatment plant,the AOB community dynamics in a...To determine whether the functional stability of nitrification was correlated to a stable community structure of ammonia oxidizing bacteria(AOB)in a fullscale wastewater treatment plant,the AOB community dynamics in a wastewater treatment system was monitored over one year.The community dynamics were investigated using specific PCR followed by terminal restriction fragment length polymorphism(T-RFLP)analysis of the amoA gene.The T-RFLP results indicated that during the period of nitrification stability,the AOB community structure in the full-scale wastewater treatment system was relatively stable,and the average change rate every 15 d of the system was 6.6%±5.8%.The phylogenetic analysis of the cloned amoA gene showed clearly that the dominant AOB in the system was Nitrosomonas spp.The results of this study indicated that throughout the study period,the AOB community structure was relatively stable in the full-scale wastewater treatment system with functional stability of nitrification.展开更多
The aim of this study was to investigate the benthic bacterial communities in different depths of an urban river sediment accumulated with high concentrations of nutrients and metals. Vertical distributions of bacteri...The aim of this study was to investigate the benthic bacterial communities in different depths of an urban river sediment accumulated with high concentrations of nutrients and metals. Vertical distributions of bacterial operational taxonomic units (OTUs) and chemical para- meters (nutrients: NH4+, NO3, dissolved organic carbon, and acid volatile sulfur; metals: Fe, Zn, and Cu) were characterized in 30 cm sediment cores. The bacterial OTUs were measured using the terminal restriction fragment length polymorphism analysis. Biodiversity indexes and multivariate statistical analyses were used to characterize the spatial distributions of microbial diversity in response to the environmental parameters. Results showed that concentrations of the nutrients and metals in this river sediment were higher than those in similar studies. Furthermore, high microbial richness and diversity appeared in the sediment. The diversity did not vary obviously in the whole sediment profile. The change of the diversity indexes and the affiliations of the OTUs showed that the top layer had different bacterial community structure from deeper layers due to the hydrological disturbance and redox change in the surface sediment. The dominant bacterial OTUs ubiquitously existed in the deeper sediment layers (5-27 cm) corresponding to the distributions of the nutrients and metals. With much higher diversity than the dominant OTUs, the minor bacterial assemblages varied with depths, which might be affected by the sedimentation process and the environmental competition pressure.展开更多
基金Supported by a Special Coordination Funds for Promoting Science and Technology by Ministry of Education, Culture, Sports, Science and Technology (MEXT)a Grant-in-Aid for Exploratory Research by MEXT
文摘AIM: To evaluate the role of intestinal microflora in the effects of multi-herbal medicine on gene expression in the gut and liver. METHODS: The multi-herbal medicine Juzentaihoto (JTX) was administered to five germ-free mice and regular mice for 2 wk. Among the results of the comprehensive gene chip analysis of the intestine and liver, we featured heat shock proteins (HSPs) 70 and 105 because their gene expression changed only in the presence of microflora. Real-time RT-PCR was performed to confirm the expression levels of these HSP genes. To determine whether JTX acts directly on the HSP genes, sodium arsenite (SA) was used to induce the heat shock proteins directly. To examine the change of the intestinal microflora with administration of JTX, the terminal restriction fragment polymorphism (T-RFLP) method was used. To identify the changed bacteria, DNA sequencing was performed.documented by gene chip and real-time RT-PCR, changed with the administration of JTX in the regular mice but not in the germ-free mice. JTX did not suppress the direct induction of the HSPs by SA. T-RFLP suggested that JTX decreased unculturable bacteria and increased Lactobacillus johnsoni. These data suggested that JTX changed the intestinal microflora which, in turn, changed HSP gene expression.CONCLUSION: Intestinal microflora affects multi-herbal product JTX on the gene expression in the gut and liver.
基金the Science Foundation ofJiangsu Province, China (No. BK2005402)the Nation-al Natural Science Foundation of China (No. 30640018)
文摘To characterize the effects of pentachlorophenol (PCP) on the performance and microbial community of aerobic granular sludge in sequencing batch reactor (SBR), the web-based terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT- PCR) techniques were used to explore the bacterial community structure. When PCP increased from 0 to 50 mg/L, the COD removal rate changed little, while the ammonia removal rate dropped from 100% to 64.9%. The results of molecular characterization showed t...
基金supported by the Research Fund from China Priority Scientific Research Project for Water Pollution Control and Treatment (No. 2008ZX07526‐001‐004)
文摘Objective To compare the bacterioplankton communities in streams exposed to pollution of different types. Methods The bacterioplankton communities in three selected heavily polluted streams were investigated by using terminal‐restriction fragment length polymorphism (T‐RFLP) analysis in combination with 16S rRNA gene clone library analysis. Results Both T‐RFLP and 16S rRNA gene clone library revealed a great difference in bacterioplankton community composition in the different streams. Conclusion This work might provide some new insights into bioremediation of heavily polluted streams.
基金This research was supported by the 908 Special Program from State Oceanic Administration—Investigation and Evaluation on Marine Medicinal Organism Sources(No.908-01-ST12).
文摘Four typical coastal sites(rocky shore,sandy shore,mud flat shore,and artificial harbor)at the Yellow Sea were chosen to investigate the spatial and seasonal variations in bacterial communities.This was accomplished by using terminal restriction fragment length polymorphism(T-RFLP)analysis of PCR amplified 16S rDNA fragments.Two kinds of tetrameric restriction enzymes,HhaI and MspI,were used in the experiment to depict the bacterial community diversity in different marine environments.It was found that the community compositions digested by the two enzymes separately were different.However,the results of bacterial community diversity derived from them were similar.The MDA analysis results of T-RFLP profiles coming from HhaI and MspI both exhibited a significant seasonal community shift for bacteria and a relatively low spatial variation among the four locations.With HhaI as the sample,the pair wise Ttests also revealed that variations were minor between each pair of marine environments,with R ranging from 0.198 to 0.349.However,the bacterial community structure in the mud flat site depicted a larger difference than each of the other three sites(R ranging from 0.282 to 0.349).
基金This study was supported by the National Natural Science Foundation of China(Grant No.51078207)Mega-projects of Science Research for Water(No.2008ZX07313-3)the Program of Research on Key Technology of Environmental Pollution Control and Quality Improvement(No.2007DFC90170),and Research Fund for the Doctoral Program of Higher Education of China(No.20090002770003).
文摘To determine whether the functional stability of nitrification was correlated to a stable community structure of ammonia oxidizing bacteria(AOB)in a fullscale wastewater treatment plant,the AOB community dynamics in a wastewater treatment system was monitored over one year.The community dynamics were investigated using specific PCR followed by terminal restriction fragment length polymorphism(T-RFLP)analysis of the amoA gene.The T-RFLP results indicated that during the period of nitrification stability,the AOB community structure in the full-scale wastewater treatment system was relatively stable,and the average change rate every 15 d of the system was 6.6%±5.8%.The phylogenetic analysis of the cloned amoA gene showed clearly that the dominant AOB in the system was Nitrosomonas spp.The results of this study indicated that throughout the study period,the AOB community structure was relatively stable in the full-scale wastewater treatment system with functional stability of nitrification.
基金Acknowledgements This work was partly supported by grants from the National Natural Science Foundation of China (Grant Nos. 51039007 and 511792t2), the Mega-projects of Science Research for Water Environment Improvement (No. 2009ZX07211-002-01) and the Research Fund Program of Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (No. 2013K0011).
文摘The aim of this study was to investigate the benthic bacterial communities in different depths of an urban river sediment accumulated with high concentrations of nutrients and metals. Vertical distributions of bacterial operational taxonomic units (OTUs) and chemical para- meters (nutrients: NH4+, NO3, dissolved organic carbon, and acid volatile sulfur; metals: Fe, Zn, and Cu) were characterized in 30 cm sediment cores. The bacterial OTUs were measured using the terminal restriction fragment length polymorphism analysis. Biodiversity indexes and multivariate statistical analyses were used to characterize the spatial distributions of microbial diversity in response to the environmental parameters. Results showed that concentrations of the nutrients and metals in this river sediment were higher than those in similar studies. Furthermore, high microbial richness and diversity appeared in the sediment. The diversity did not vary obviously in the whole sediment profile. The change of the diversity indexes and the affiliations of the OTUs showed that the top layer had different bacterial community structure from deeper layers due to the hydrological disturbance and redox change in the surface sediment. The dominant bacterial OTUs ubiquitously existed in the deeper sediment layers (5-27 cm) corresponding to the distributions of the nutrients and metals. With much higher diversity than the dominant OTUs, the minor bacterial assemblages varied with depths, which might be affected by the sedimentation process and the environmental competition pressure.