期刊文献+
共找到3,261篇文章
< 1 2 164 >
每页显示 20 50 100
Assessment of natural and anthropogenic impacts on terrestrial water storage in the Loess Plateau based on different types of GRACE/GRACE-FO solutions
1
作者 ZHANG Cheng CHEN Peng +4 位作者 ZHU Chengchang LU Jierui ZHANG Yuchen YANG Xinyue WU Mengyan 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2173-2192,共20页
Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of wat... Changes in water resource storage are inevitable due to climate change and human activities,thus understanding alterations in water storage within a specific region is imperative for the planning and management of water resources.Data from the Gravity Recovery and Climate Experiment(GRACE)satellite mission are extensively employed to analyze large-scale total terrestrial water storage anomalies(TWSA).In this study,we derived a more reliable TWSA using different types of GRACE gravity models,which served as the basis for evaluating spatial and temporal variations in total terrestrial water storage and its hydrological components(soil moisture and groundwater)across the Loess Plateau.Additionally,we analyzed the impact of natural and anthropogenic influences on water storage in the Loess Plateau,categorizing them into primary and secondary influences,utilizing data on climate and human activities.The findings revealed a declining trend in the overall TWSA of the Loess Plateau,with a rate of decrease at-0.65±0.05 cm/yr from 2003 to 2020(P<0.01).As the direct factors affecting TWSA,soil moisture dominated the change of TWSA before 2009,and groundwater dominated the change of TWSA after 2009.Spatially,there was variability in the changes of TWSA in the Loess Plateau.More in-depth studies showed that soil moisture changes in the study area were primarily driven by evapotranspiration and temperature,with precipitation and vegetation cover status playing a secondary role.Human activities had a secondary effect on soil moisture in some sub-regions.Population change and agricultural development were major factors in altering groundwater storage in the study area.Other than that,groundwater was influenced by natural factors to a limited extent.These findings provided valuable insights for local governments to implement proactive water management policies. 展开更多
关键词 GRACE terrestrial water storage Human activity Loess Plateau
下载PDF
Impacts of artificial dams on terrestrial water storage changes and the Earth's elastic load response during 1950-2016: A case study of medium and large reservoirs in Chinese mainland
2
作者 Linsong Wang Mingtao Zhu +2 位作者 Yulong Zhong Jianwei Sun Zhenran Peng 《Geodesy and Geodynamics》 EI CSCD 2024年第3期252-263,共12页
The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir prop... The construction of dams for intercepting and storing water has altered surface water distributions, landsea water exchanges, and the load response of the solid Earth. The lack of accurate estimation of reservoir properties through the land surface and hydrological models can lead to water storage simulation and extraction errors. This impact is particularly evident in many artificial reservoirs in China. The study aims to comprehensively assess the spatiotemporal distribution and trends of water storage in medium and large reservoirs(MLRs) in Chinese mainland during 1950-2016, and to investigate the gravity,displacement, and strain effects induced by the reservoir mass concentration using the load elasticity theory. In addition, the impoundment contributions of MLRs to the relative sea level changes were assessed using a sea-level equation. The results show impoundment increases in the MLRs during1950-2016, particularly in the Yangtze River(Changjiang) and southern basins, causing significant elastic load effects in the surrounding areas of the reservoirs and increasing the relative sea level in China's offshore. However, long-term groundwater estimation trends are overestimated and underestimated in the Yangtze River and southwestern basins, respectively, due to the neglect of the MLRs impacts or the uncertainty of the hydrological model's output(e.g., soil moisture, etc.). The construction of MLRs may reduce the water mass input from land to the ocean, thus slowing global sea level rise. The results of the impact of human activities on the regional water cycle provide important references and data support for improving the integration of hydrological models, evaluating Earth's viscoelastic responses under longterm reservoir storage, enhancing in-situ and satellite geodetic measurements, and identifying the main factors driving sea level changes. 展开更多
关键词 Man-made dams terrestrial water storage Elastic load response Sea level changes Chinese mainland
下载PDF
Changes of Terrestrial Water Storage in the Yellow River Basin Under Global Warming
3
作者 曾昕瑞 管晓丹 +2 位作者 陈涵 魏志敏 王国栋 《Journal of Tropical Meteorology》 SCIE 2024年第2期132-148,共17页
The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to r... The increasing temperature in the Yellow River Basin has led to a rapid rise in the melting level height,at a rate of 5.98 m yr^(-1)during the cold season,which further contributes to the transition from snowfall to rainfall patterns.Between 1979 and 2020,there has been a decrease in snowfall in the Yellow River Basin at a rate of-3.03 mm dec^(-1),while rainfall has been increasing at a rate of 1.00 mm dec^(-1).Consequently,the snowfall-to-rainfall ratio(SRR)has decreased.Snowfall directly replenishes terrestrial water storage(TWS)in solid form until it melts,while rainfall is rapidly lost through runoff and evaporation,in addition to infiltrating underground or remaining on the surface.Therefore,the decreasing SRR accelerates the depletion of water resources.According to the surface water balance equation,the reduction in precipitation and runoff,along with an increase in evaporation,results in a decrease in TWS during the cold season within the Yellow River Basin.In addition to climate change,human activities,considering the region's dense population and extensive agricultural land,also accelerate the decline of TWS.Notably,irrigation accounts for the largest proportion of water withdrawals in the Yellow River Basin(71.8%)and primarily occurs during the warm season(especially from June to August).The impact of human activities and climate change on the water cycle requires further in-depth research. 展开更多
关键词 terrestrial water storage melting level height surface water balance human activities Yellow River Basin
下载PDF
Summer Atmospheric Water Cycle under the Transition Influence of the Westerly and Summer Monsoon over the Yarlung Zangbo River Basin in the Southern Tibetan Plateau
4
作者 Qianhui MA Chunyan ZHANG +1 位作者 Donghai WANG Zihao PANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期830-846,共17页
This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The ... This study compares the summer atmospheric water cycle,including moisture sources and consumption,in the upstream,midstream,and downstream regions of the Yarlung Zangbo River Basin in the southern Tibetan Plateau.The evolutions of moisture properties under the influence of the westerly and summer southerly monsoon are examined using 5-yr multi-source measurements and ERA5 reanalysis data.Note that moisture consumption in this study is associated with clouds,precipitation,and diabatic heating.Compared to the midstream and downstream regions,the upstream region has less moisture,clouds,and precipitation,where the moisture is brought by the westerly.In early August,the vertical wet advection over this region becomes enhanced and generates more high clouds and precipitation.The midstream region has moisture carried by the westerly in June and by the southerly monsoon from July to August.The higher vertical wet advection maximum here forms more high clouds,with a precipitation peak in early July.The downstream region is mainly affected by the southerly-driven wet advection.The rich moisture and strong vertical wet advection here produce the most clouds and precipitation among the three regions,with a precipitation peak in late June.The height of the maximum moisture condensation is different between the midstream region(325 hPa)and the other two regions(375 hPa),due to the higher upward motion maximum in the midstream region.The diabatic heating structures show that stratiform clouds dominate the upstream region,stratiform clouds and deep convection co-exist in the midstream region,and deep convection systems characterize the downstream region. 展开更多
关键词 Yarlung Zangbo River Basin atmospheric water cycle constrained variational analysis moisture source and consumption
下载PDF
Assessing the impacts of natural conditions and human activities on terrestrial water storage in Loess Plateau,China
5
作者 WANG Cheng-xi YAN Jian-wu +5 位作者 LIANG Wei SUN Shao-bo GOU Fen LI Xiao-fei LUO Yuan-yuan WANG Feng-jiao 《Journal of Mountain Science》 SCIE CSCD 2023年第7期1921-1939,共19页
The gravity recovery and climate experiment(GRACE)has emerged as a crucial source of land water storage information in hydrological analysis and research.Numerous factors contribute to regional terrestrial water stora... The gravity recovery and climate experiment(GRACE)has emerged as a crucial source of land water storage information in hydrological analysis and research.Numerous factors contribute to regional terrestrial water storage(TWS),resulting in a complex mechanism.In the Loess Plateau region,the continuous alteration of natural conditions and profound impact of human activities have posed a serious threat to the natural ecosystem,leading to an escalating trend of TWS reduction.Addressing the specific analysis of how natural conditions and human activities affect TWS represents a pressing issue.This study employed the residual analysis method to discern the contribution rates of natural conditions and human activities,elucidated the spatial and temporal changes associated with each factor,and ascertained their individual influence.The findings indicated that TWS on the Loess Plateau exhibited a downward trend of-4.89 mm·a^(-1)from 2003 to 2017.The combined effects of climate change and human activities accounted for alterations in water resource reserves across most areas of the Loess Plateau,with human activities predominantly driving these changes.Precipitation emerged as the primary natural factor influencing TWS variations,and NDVI demonstrated a positive feedback effect on TWS at approximately 30%.Substantial spatial disparities in TWS existed within the Loess Plateau,with human activities identified as the primary cause for the decreasing trend.Vegetation restoration plays a positive role in saving water resources in the Loess Plateau to some extent,and vegetation growth exceeding the regional load will lead to water shortage. 展开更多
关键词 terrestrial water storage Residual analysis Human activity the Loess Plateau
下载PDF
Spatio-temporal variability of terrestrial water storage in the Yangtze River Basin: Response to climate changes
6
作者 Yaoguo Wang Zhaoyang Sun +2 位作者 Qiwen Wu Jun Fang Wei Jia 《Geodesy and Geodynamics》 EI CSCD 2023年第3期201-211,共11页
The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distributi... The Yangtze River Basin(YRB)is an important region for China's economic development.However,it has a complex terrain layout,most of which is affected by monsoon weather,and the geographical and temporal distribution of water resources is severely unbalanced.Therefore,the detailed analysis of spatio-temporal water mass changes is helpful to the development and rational utilization of water resources in the YRB.In this study,the variation of terrestrial water storage(TWS)is monitored by Gravity Recovery and Climate Experiment(GRACE)satellite gravity.We find that the University of Texas Center for Space Research(CSR)solution shows a notable difference with the Jet Propulsion Laboratory(JPL)in space,but the general trend is consistent in time series.Then the GRACE inferred water mass variation reveals that the YRB has experienced several drought and flood events over the past two decades.Global Land Data Assimilation System(GLDAS)results are similar to GRACE.Furthermore,the overall precipitation trend tends to be stable in space,but it is greatly influenced by the strong El Nino-~Southern Oscillation(ENSO),which is the response to global climate change.The upper YRB is less affected by ENSO and shows a more stable water storage signal with respect to the lower YRB. 展开更多
关键词 Yangtze river basin terrestrial water storage GRACE Time-varying gravity field
下载PDF
Evaluating the weekly changes in terrestrial water storage estimated by two different inversion strategies in the Amazon River Basin
7
作者 Bo Zhong Xianpao Li +2 位作者 Qiong Li Jiangtao Tan Xianyun Dai 《Geodesy and Geodynamics》 EI CSCD 2023年第6期614-626,共13页
In this study,we estimated the weekly Gravity Recovery and Climate Experiment(GRACE)spherical harmonic(SH)solutions and regional mascon solutions using GRACE-based Geopotential Difference(GPD)data and investigated the... In this study,we estimated the weekly Gravity Recovery and Climate Experiment(GRACE)spherical harmonic(SH)solutions and regional mascon solutions using GRACE-based Geopotential Difference(GPD)data and investigated their abilities in retrieving terrestrial water storage(TWS)changes over the Amazon River Basin(ARB)from January 2003 to February 2013.The performance of the weekly GPD-SH and GPDmascon solutions was evaluated by comparing them with the weekly GFZ-SH solutions,Global Land Data Assimilation Systems(GLDAS)-NOAH hydrological model outputs,and monthly GFZ-SH,GPD-SH,and CSRmascon solutions in the spatio-temporal and spectral domains.The results demonstrate that the weekly GPD-SH and GPD-mascon present good consistency with the weekly GFZ-SH solutions and GLDAS-NOAH estimates in the spatio-temporal domains,but GPD-mascon presents stronger signal amplitudes and more spatial details.The comparison of the monthly average of weekly estimates and monthly solutions demonstrates that the weekly GPD-mascon and GFZ-SH with DDK1 filtering are close to the monthly CSRmascon and GFZ-SH solutions,respectively.However,the signal amplitudes of TWS changes from GPD-SH and GFZ-SH with 650 km Gaussian filtering are smaller than the monthly solutions,and the corresponding Root Mean Square Errors between the TWS change time series from the monthly average of weekly solutions and monthly estimates are 18.12 mm(GPD-mascon),18.81 mm(GFZ-SH-DDK1),24.93 mm(GPDSH-G650km),and 33.07 mm(GFZ-SH-G650km),respectively.Additionally,the TWS change time series derived from weekly solutions present more high-frequency time-varying information than monthly solutions.Furthermore,the 300 km Gaussian filtering can improve the signal amplitudes of TWS changes from the weekly GPD-SH solutions more than those with 650 km Gaussian filtering,but the corresponding noise level is higher.The weekly GPD-SH and GPD-mascon solutions can extend the application scopes of GRACE and provide good complements to the current GRACE monthly solutions. 展开更多
关键词 terrestrial water storage change Amazon River Basin GRACE-based geopotential differences Weekly solutions Performance evaluation
下载PDF
Optimal Dynamic Voltage Restorer Using Water Cycle Optimization Algorithm
8
作者 Taweesak Thongsan Theerayuth Chatchanayuenyong 《Computer Systems Science & Engineering》 SCIE EI 2023年第4期595-623,共29页
This paper proposes a low complexity control scheme for voltage control of a dynamic voltage restorer(DVR)in a three-phase system.The control scheme employs the fractional order,proportional-integral-derivative(FOPID)... This paper proposes a low complexity control scheme for voltage control of a dynamic voltage restorer(DVR)in a three-phase system.The control scheme employs the fractional order,proportional-integral-derivative(FOPID)controller to improve on the DVR performance in order to enhance the power quality in terms of the response time,steady-state error and total harmonic distortion(THD).The result obtained was compared with fractional order,proportionalintegral(FOPI),proportional-integral-derivative(PID)and proportional-integral(PI)controllers in order to show the effectiveness of the proposed DVR control scheme.A water cycle optimization algorithm(WCA)was utilized to find the optimal set for all the controller gains.They were used to solve four power quality issues;balanced voltage sag,balanced voltage swell,unbalanced voltage sag,and unbalanced voltage swell.It showed that one set of controller gain obtained from the WCA could solve all the power quality issues while the others in the literature needed an individual set of optimal gain for each power quality problem.To prove the concept,the proposed DVR algorithm was simulated in the MATLAB/Simulink software and the results revealed that the four optimal controllers can compensate for all the power quality problems.A comparative analysis of the results in various aspects of their dynamic response and%THD was discussed and analyzed.It was found that PID controller yields the most rapid performance in terms of average response time while FOPID controller yields the best performance in term of average%steady-state error.FOPI controller was found to provide the lowest THD percentage in the average%THD.FOPID did not differ much in average response from the PID and average%THD from FOPI;however,FOPID provided the most outstanding average steady-state error.According to the CBMA curve,the dynamic responses of all controllers fall in the acceptable power quality area.The total harmonic distortion(THD)of the compensated load voltage from all the controllers were within the 8%limit in accordance to the IEEE std.519-2014. 展开更多
关键词 Dynamic voltage restorer FOPID controller FOPI controller water cycle algorithm
下载PDF
Impact of climate change and human activities on the spatiotemporal dynamics of surface water area in Gansu Province, China
9
作者 LU Haitian ZHAO Ruifeng +3 位作者 ZHAO Liu LIU Jiaxin LYU Binyang YANG Xinyue 《Journal of Arid Land》 SCIE CSCD 2024年第6期798-815,共18页
Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with comp... Understanding the dynamics of surface water area and their drivers is crucial for human survival and ecosystem stability in inland arid and semi-arid areas.This study took Gansu Province,China,a typical area with complex terrain and variable climate,as the research subject.Based on Google Earth Engine,we used Landsat data and the Open-surface Water Detection Method with Enhanced Impurity Control method to monitor the spatiotemporal dynamics of surface water area in Gansu Province from 1985 to 2022,and quantitatively analyzed the main causes of regional differences in surface water area.The findings revealed that surface water area in Gansu Province expanded by 406.88 km2 from 1985 to 2022.Seasonal surface water area exhibited significant fluctuations,while permanent surface water area showed a steady increase.Notably,terrestrial water storage exhibited a trend of first decreasing and then increasing,correlated with the dynamics of surface water area.Climate change and human activities jointly affected surface hydrological processes,with the impact of climate change being slightly higher than that of human activities.Spatially,climate change affected the'source'of surface water to a greater extent,while human activities tended to affect the'destination'of surface water.Challenges of surface water resources faced by inland arid and semi-arid areas like Gansu Province are multifaceted.Therefore,we summarized the surface hydrology patterns typical in inland arid and semi-arid areas and tailored surface water'supply-demand'balance strategies.The study not only sheds light on the dynamics of surface water area in Gansu Province,but also offers valuable insights for ecological protection and surface water resource management in inland arid and semi-arid areas facing water scarcity. 展开更多
关键词 surface water area terrestrial water storage Open-surface water Detection Method with Enhanced Impurity Control method Google Earth Engine climate change human activities inland arid and semi-arid areas
下载PDF
Long-term operation optimization of circulating cooling water systems under fouling conditions
10
作者 Jiarui Liang Yong Tian +3 位作者 Shutong Yang Yong Wang Ruiqi Yin Yufei Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第1期255-267,共13页
Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optim... Fouling caused by excess metal ions in hard water can negatively impact the performance of the circulating cooling water system(CCWS)by depositing ions on the heat exchanger's surface.Currently,the operation optimization of CCWS often prioritizes short-term flow velocity optimization for minimizing power consumption,without considering fouling.However,low flow velocity promotes fouling.Therefore,it's crucial to balance fouling and energy/water conservation for optimal CCWS long-term operation.This study proposes a mixed-integer nonlinear programming(MINLP)model to achieve this goal.The model considers fouling in the pipeline,dynamic concentration cycle,and variable frequency drive to optimize the synergy between heat transfer,pressure drop,and fouling.By optimizing the concentration cycle of the CCWS,water conservation and fouling control can be achieved.The model can obtain the optimal operating parameters for different operation intervals,including the number of pumps,frequency,and valve local resistance coefficient.Sensitivity experiments on cycle and environmental temperature reveal that as the cycle increases,the marginal benefits of energy/water conservation decrease.In periods with minimal impact on fouling rate,energy/water conservation can be achieved by increasing the cycle while maintaining a low fouling rate.Overall,the proposed model has significant energy/water saving effects and can comprehensively optimize the CCWS through its incorporation of fouling and cycle optimization. 展开更多
关键词 Computer simulation Circulating water system FOULING Concentration cycle OPTIMIZATION Variable frequency drive
下载PDF
Hydrochemical characteristics of surface water in Hengduan mountain region of Eastern Tibet and its response to human activities:A case study of Duoqu Basin,Jinsha River
11
作者 Jing-jie Li Sheng Lian +2 位作者 Ming-guo Wang Huai-sheng Zhang Tao Yang 《China Geology》 CAS CSCD 2024年第4期630-641,共12页
The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational develo... The analysis of hydrochemical characteristics and influencing factors of surface river on plateau is helpful to study water hydrological cycle and environmental evolution,which can scientifically guide rational development and utilization of water resources and planning of ecological environment protection.With the expansion and diversification of human activities,the quality of surface rivers will be more directly affected.Therefore,it is of great significance to pay attention to the hydrochemical characteristics of plateau surface rivers and the influence of human activities on their circulation and evolution.In this study,surface water in the Duoqu basin of Jinsha River located in Hengduan mountain region of Eastern Tibet was selected as the representative case.Twenty-three groups of surface water samples were collected to analyze the hydrochemical characteristics and ion sources based on correlation analysis,piper trigram,gibbs model,hydrogen and oxygen isotopic techniques.The results suggest the following:(1)The pH showed slight alkalinity with the value ranged from 7.25 to 8.62.Ca^(2+),Mg^(2+)and HCO_(3)^(–)were the main cations and anions.HCO_(3)^(-)Ca and HCO_(3)^(-)Ca·Mg were the primary hydrochemical types for the surface water of Duoqu River.The correlation analysis showed that TDS had the most significant correlation with Ca^(2+),Mg^(2+)and HCO_(3)^(–).Analysis on hydrogen and oxygen isotopes indicated that the surface rivers were mainly recharged by atmospheric precipitation and glacial melt water in this study area.(2)The surface water had a certain reverse cation alternating adsorption,and surface water ions were mainly derived from rock weathering,mainly controlled by weathering and dissolution of carbonates,and secondly by silicates and sodium rocks.(3)The influence of human activities was weak,while the development of cinnabar minerals had a certain impact on the hydrochemistry characteristics,which was the main factor for causing the increase of SO_(4)^(2–).The densely populated county towns and temples with frequent incense burning activities may cause some anomalies of surface water quality.At present,the Duoqu River watershed had gone through a certain influence of mineral exploitation,so the hydrological cycle and river eco-environment at watershed scale will still bound to be change.The results could provide basic support for better understanding water balance evolution as well as the ecological protection of Duoqu River watershed. 展开更多
关键词 Hydrochemistry characteristics Weathering dissolution Ion source H-O isotopes water cycle Environmental evolution Human activities Mineral exploitation Incense burning activity Hengduan mountain region Tibet
下载PDF
Characteristics of In-Situ Soil Water Hysteresis Observed through Multiple-Years Monitoring
12
作者 Ippei Iiyama 《Journal of Geoscience and Environment Protection》 2024年第5期162-175,共14页
A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil wa... A soil water retention curve (SWRC) is an essential soil physical property for analyzing transport and retention of water in a soil layer. A SWRC is often described as a single-valued function that relates the soil water potential ψ to volumetric water content θ of the soil. However, an in-situ ψ − θ relation should show soil water hysteresis, though this fact is often neglected in analyses of field soil water regimes while long-term in-situ soil water hysteresis is not well characterized. This study aimed at probing and characterizing in-situ ψ − θ relations. The developments of large hysteresis in the in-situ ψ − θ relations were observed only a few times during the study period of 82 months. Any of the large hysteretic behaviors in the ψ − θ relations began with an unusually strong continual reduction in ψ. The completion of a hysteresis loop required a recorded maximum rainfall. Because the study field had very small chances to meet such strong rainfall events, it took multiple years to restore the fraction of soil water depleted by the unusually strong continual reduction in ψ. While wetting-drying cycles had occurred within a certain domain of ψ, hysteretic behaviors tended to be so small that the in-situ ψ − θ relation can be approximated as a single-valued function of θ(ψ). These observed patterns of the in-situ ψ − θ relations were characterized by kinds of difference in dθ/dψ between a drying process and a wetting process at a given ψ. Thus, more amounts of experimental facts about wetting SWRCs in parallel with drying SWRCs should be needed for correct modelling, analyzing, and predicting soil water regimes in fields. It is also necessary to increase our understandings about the long-term trends of occurrences of extreme weather conditions associated with possible change in climate. 展开更多
关键词 Atmospheric Conditions Field water Regimes Hysteretic Behaviors Soil Moisture Conditions Soil water Characteristic Curves Specific water Capacity Wetting-Drying cycles
下载PDF
Research progress of socio-economic water cycle in China 被引量:6
13
作者 JIA Shao-feng, WANG Guo, ZHANG Shi-feng, YU Gui-rui, WANG Jin-xia, XIA Jun (Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101,China) 《Journal of Geographical Sciences》 SCIE CSCD 2002年第1期114-120,共7页
China has made great progress in the study of socio-economic water cycle. She has completed national water resources appraisement and medium to long-term water supply planning. She has been engaging in study on water-... China has made great progress in the study of socio-economic water cycle. She has completed national water resources appraisement and medium to long-term water supply planning. She has been engaging in study on water-deficient regions in North China and Northwest China for about half a century. For solving water shortage problem in northern China, she has put forward the famous South-to-North Water Transferring Projects, which has been set as one of the four biggest national projects in the Tenth Five-Year-Plan period although there are still debates. For promoting water use efficiency, China has been reforming her water management system, including water right system and water price system. There has already been a case of water right purchase. China has also done a lot of research on the interaction between human activity, water and ecosystem. For meeting the need of sustainability and coordinating water resources development and environmental protection, the study of ecological water requirement became very hot in recent years. There are three focuses of socio-economic water cycle study now in China: water transfer projects from the south to the north, water resources management and ecological water requirement. 展开更多
关键词 water cycle socio-economic water cycle sustainable water resources management water security
下载PDF
Terrestrial water storage changes over the Pearl River Basin from GRACE and connections with Pacific climate variability 被引量:8
14
作者 Zhicai Luo Chaolong Yao +1 位作者 Qiong Li Zhengkai Huang 《Geodesy and Geodynamics》 2016年第3期171-179,共9页
Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 200... Time-variable gravity data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are used to study terrestrial water storage (TWS) changes over the Pearl River Basin (PRB) for the period 2003-Nov. 2014. TWS estimates from GRACE generally show good agreement with those from two hydrological models GLDAS and WGHM. But they show different capability of detecting significant TWS changes over the PRB. Among them, WGHM is likely to underestimate the seasonal variability of TWS, while GRACE detects long- term water depletions over the upper PRB as was done by hydrological models, and observes significant water increases around the Longtan Reservoir (LTR) due to water impoundment. The heavy drought in 2011 caused by the persistent precipitation deficit has resulted in extreme low surface runoff and water level of the LTR. Moreover, large variability of summer and autumn precipitation may easily trigger floods and droughts in the rainy season in the PRB, especially for summer, as a high correlation of 0.89 was found between precipitation and surface runoff. Generally, the PRB TWS was negatively correlated with El Nifio-Southern Oscillation (ENSO) events. However, the modulation of the Pacific Decadal Oscillation (PDO) may impact this relationship, and the significant TWS anomaly was likely to occur in the peak of PDO phase as they agree well in both of the magnitude and timing of peaks. This indicates that GRACE-based TWS could be a valuable parameter for studying climatic in- fluences in the PRB. 展开更多
关键词 GRACE terrestrial water storage Pearl River Basin DROUGHT Climate variability
下载PDF
Precipitation isotopes in the Tianshan Mountains as a key to water cycle in arid central Asia 被引量:9
15
作者 Ming Jun Zhang Sheng Jie Wang 《Research in Cold and Arid Regions》 CSCD 2018年第1期27-37,共11页
The Tianshan Mountains is a wet island in arid central Asia, and precipitation amount across the mountains is much larger than that in the surrounding low-lying areas. To investigate the regional water cycle in arid c... The Tianshan Mountains is a wet island in arid central Asia, and precipitation amount across the mountains is much larger than that in the surrounding low-lying areas. To investigate the regional water cycle in arid central Asia, stable isotope composition in precipitation has received increased attention during the past decades. This paper reviewed current knowledge of observed and simulated stable isotope ratios in precipitation across the Tianshan Mountains. The temperature effect of stable isotopes in precipitation has been widely accepted in arid central Asia and can be applied to paleoclimate reconstruction using ice cores. The seasonality of precipitation isotopically enriched in summer months and depleted in winter months is usually attributed to westerly-dominated moisture, but different trajectory paths to the northern and southern slopes of the Tianshan Mountains can still be modelled. The proportional contribution and its uncertainty of surface evaporation and transpiration to local precipitation can be estimated using the isotope approach, and transpiration plays a dominant role in recycled moisture for oasis sites. The impact of below-cloud evaporation on precipitation stable isotopes on the southern slope is usually larger than that on the northern slope. 展开更多
关键词 stable ISOTOPES PRECIPITATION water cycle TIANSHAN MOUNTAINS central Asia
下载PDF
Biogeochemical cycles of selenium in Antarctic water 被引量:6
16
作者 Xia Weiping (Department of Oceanography, Old Dominion University, Norfolk,VA 23529,USA)Zhang Haishen (Second Institute of Oceanography,SOA,Hangzhou 310012,China)Tan Jianan (Institute of Geography,Chinese Academy of Sciences,Beijing 100101,China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1996年第1期120-126,共7页
Both vertical and horizontal profiles of total dissolved selenium,dissolved organic and inorganic selenium,including Se(IV)and Se(VI),as well as particulate selenium in seawater were obtained on a basis of newly devel... Both vertical and horizontal profiles of total dissolved selenium,dissolved organic and inorganic selenium,including Se(IV)and Se(VI),as well as particulate selenium in seawater were obtained on a basis of newly developed separation technique form Antarctic Ocean,where the prodiction of deep waters occurs.The results exhibited that the concentrations of Se(IV) and Se(VI) were elevated and the total concentration in the surface of the high latitude waters (1. 31 nmol/L) was above those at lower latitudes (1.09 nmol/L) and also that previously reported from the Southern Ocean(1.18 nmol/L,Suzuki,1987).Preliminary investigation using specifically designed microlayer-sampler,that was first employed to identify the main biogeochemical proeesses,revealed Antarctic Ocean being functioning as a potential source as selenium in sea-air exchange. The mean life time of the selenium,detected as Se(IV) in deep water, was also estimated rather shorter than the residence time of the water mass, based on the samples collected from the cruise of China's Sixth Scientific Expedition. 展开更多
关键词 Antarctic waters SELENIUM biogeochemical cycle microlayer.
下载PDF
Effect of apple production base on regional water cycle in Weibei upland of the Loess Plateau 被引量:8
17
作者 HUANG Ming-bin~1, HE Fu-hong~2, YANG Xin-min~1, LI Yu-shan~1 (1. Institute of Soil and Water Conservation, CAS, Yangling 712100, China 2. Northwest Sci-tech University of Agriculture and Forestry, Yangling 712100, China) 《Journal of Geographical Sciences》 SCIE CSCD 2001年第2期239-243,共5页
Weibei upland, located in southern part of the Loess Plateau, is a commercial apple production base in China. The enlargement of apple-planting area has a great impact on the regional water cycle. The effects of diffe... Weibei upland, located in southern part of the Loess Plateau, is a commercial apple production base in China. The enlargement of apple-planting area has a great impact on the regional water cycle. The effects of different land use on hydrological parameters are compared and studied in this paper. The main results are as follows (1) The initial and steady infiltration rates in apple orchard are higher than those in other land use types such as grassland, idle land and farmland. Their initial rates of infiltration are 0.823 cm/min, 0.215 cm/min, 0.534 cm/min and 0.586 cm/min in apple orchard, grassland, idle land and farmland respectively. Their steady infiltration rates are 0.45 cm/min, 0.038 cm/min, 0.191 cm/min and 0.155 cm/min respectively. (2) There is no runoff generated in plot of apple orchard in all 8 storm events in observed natural rainfalls, while runoff is generated in winter wheat plot, corn plot and alfalfa plot with runoff coefficients of 2.39%, 1.58% and 0.31% respectively. (3) The transpiration of apple trees is strong and thus soil moisture is gradually depleted. The average soil water contents in 3–9 m soil profile in Changwu plots with apple trees of 14 and 32 years in age are 11.77% and 11.59% and in Luochuan plots with those of 15 and 28 years in age are 11.7% and 11.59% respectively, which are nearly 9.0% of wilting moisture of Changwu soil and 8.6% of wilting moisture of Luochuan soil. The pathway of rainfall percolating to groundwater is hindered by dry soil profile. 展开更多
关键词 Loess Plateau Weibei upland water cycle
下载PDF
New evidence for the links between the local water cycle and the underground wet sand layer of a mega-dune in the Badain Jaran Desert, China 被引量:7
18
作者 Jun WEN ZhongBo SU +5 位作者 TangTang ZHANG Hui TIAN YiJian ZENG Rong LIU Yue KANG Rogier van der VELDE 《Journal of Arid Land》 SCIE CSCD 2014年第4期371-377,共7页
Scientists and the local government have great concerns about the climate change and water resources in the Badain Jaran Desert of western China. A field study for the local water cycle of a lake-desert system was con... Scientists and the local government have great concerns about the climate change and water resources in the Badain Jaran Desert of western China. A field study for the local water cycle of a lake-desert system was conducted near the Noertu Lake in the Badain Jaran Desert from 21 June to 26 August 2008. An underground wet sand layer was observed at a depth of 20–50 cm through analysis of datasets collected during the field experiment. Measurements unveiled that the near surface air humidity increased in the nighttime. The sensible and latent heat fluxes were equivalent at a site about 50 m away from the Noertu Lake during the daytime, with mean values of 134.4 and 105.9 W/m2 respectively. The sensible heat flux was dominant at a site about 500 m away from the Noertu Lake, with a mean of 187.7 W/m2, and a mean latent heat flux of only 26.7 W/m2. There were no apparent differences for the land surface energy budget at the two sites during the night time. The latent heat flux was always negative with a mean value of –12.7 W/m2, and the sensible heat flux was either positive or negative with a mean value of 5.10 W/m2. A portion of the local precipitation was evaporated into the air and the top-layer of sand dried quickly after every rainfall event, while another portion seeped deep and was trapped by the underground wet sand layer, and supplied water for surface psammophyte growth. With an increase of air humidity and the occurrence of negative latent heat flux or water vapor condensation around the Noertu Lake during the nighttime, we postulated that the vapor was transported and condensed at the lakeward sand surface, and provided supplemental underground sand pore water. There were links between the local water cycle, underground wet sand layer, psammophyte growth and landscape evolution of the mega-dunes surrounding the lakes in the Badain Jaran Desert of western China. 展开更多
关键词 mega-dune water cycle observation wet sand layer Badain Jaran Desert
下载PDF
Chemical and Isotopic Approach to Groundwater Cycle in Western Qaidam Basin,China 被引量:11
19
作者 TAN Hongbing RAO Wenbo +3 位作者 CHEN Jiansheng SU Zhiguo SUN Xiaoxu LIU Xiaoyan 《Chinese Geographical Science》 SCIE CSCD 2009年第4期357-364,共8页
Due to the extremely arid climate in the western Qaidam Basin,the groundwater almost becomes the single water source for local residents and industrial production.It is necessary to know the reliable information on th... Due to the extremely arid climate in the western Qaidam Basin,the groundwater almost becomes the single water source for local residents and industrial production.It is necessary to know the reliable information on the groundwater cycle in this region for reasonable and sustainable exploitation of the groundwater resources with the further execution of recycling economy policies.This study focused on the recharge,the flow rate and the discharge of groundwater in the western Qaidam Basin through investigations on water chemistry and isotopes.Hydrological,chemical and isotopic characteristics show that the groundwater in the western Qaidam Basin was recharged by meltwater from new surface snow and old bottom glaciers on the northern slope of the Kunlun Mountains.In addition,the results also prove that the source water is enough and stable,and the rates of the circulation and renewal of the groundwater are relatively quick.Therefore,it can be concluded that the groundwater resources would guarantee the regional requirement if the meltwater volume of the mountains has not a great changes in future,moreover,water exploitation should be limited to the renewable amount of the groundwater reservoir in the western Qaidam Basin. 展开更多
关键词 groundwater cycle water chemistry ISOTOPE Qaidam Basin
下载PDF
New progress of research on water cycle in atmosphere in China 被引量:4
20
作者 Wang Guo Jia Shao-feng +8 位作者 Yu Gui-rui Xu Juan Wang Jin-xia Wang Qiu-feng Ge Quan-sheng Huang Ji-kun Xia Jun Li Li-fnjuan et al. 《Journal of Geographical Sciences》 SCIE CSCD 2001年第4期100-109,共10页
New progresses are introduced briefly about the water cycle study on atmosphere of China made in recent years. The introduction includes eight aspects as follows: 1) precipitation characteristics, 2) stability of clim... New progresses are introduced briefly about the water cycle study on atmosphere of China made in recent years. The introduction includes eight aspects as follows: 1) precipitation characteristics, 2) stability of climatic system, 3) precipitation sensitive region, 4) regional evaporation and evapotranspiration, 5) water surface evaporation, 6) vegetation transpiration, 7) cloud physics, and 8) vapor source. 展开更多
关键词 PROGRESS water cycle ATMOSPHERE
下载PDF
上一页 1 2 164 下一页 到第
使用帮助 返回顶部