The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic t...The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SHO-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern ofPPM EMATs, and can be used for their parameter optimization.展开更多
Cohesive element is developed from the Dugdal-Barenblatt model in the field of fracture mechanics. The mechanical constitutive relation of cohesive element can be artificially assumed depending on the specific applica...Cohesive element is developed from the Dugdal-Barenblatt model in the field of fracture mechanics. The mechanical constitutive relation of cohesive element can be artificially assumed depending on the specific applications. It has been successfully applied in the study of crystal plasticity/brittle fracture process and decohesion between delaminations. In this paper, tensile experiments of large steel plate with different length of pre-existing cracks are conducted. Based on commercial software ABAQUS, cohesive element is adopted to simulate the tensile tests, and appropriate parameter values are obtained by fitting displacement-force curves. Using these parameters, a numerical method is presented by applying cohesive element to thermo-elastic-plastic finite element method (TEP-FEM) to simulate plate rigid restraint cracking (PRRC) tests. By changing constitutive relation of cohesive element, dimensions of the model and welding conditions, the influence of welding restraint intensity and welding conditions on the crack propagation are discussed, respectively. Three types of welding cold cracking are simulated. Significant influence of welding cold cracking on resistant stress in welding line is captured by this numerical method.展开更多
Brucellosis is a zoonotic disease of economic importance. The clinical manifestations vary in humans;therefore a good diagnostic test is required to confirm the disease. The serum tube agglutination (SA) test, though ...Brucellosis is a zoonotic disease of economic importance. The clinical manifestations vary in humans;therefore a good diagnostic test is required to confirm the disease. The serum tube agglutination (SA) test, though still the most widely test used, can be problematic for the diagnosis of chronic infections. The other supplementary tests, such as the complement fixation (CF) test and ELISA, require special equipment, reagents and trained personnel. The Rose Bengal plate (RBP) test has shown potential as a good rapid diagnostic test. This is a report of serum samples from suspected cases of brucellosis that were tested using the RBP, SA and CF tests. The RBP test was shown to have a better relative sensitivity and as good specificity as the SA when compared with the CF test, and may be a useful initial diagnostic test for hospitals in remote rural areas if properly conducted with well stored antigen.展开更多
A full-scale composite floor plate was tested to investigate the flexural behavior and in-plane effects of the floor slab in a grillage of composite beams that reduces the tendency for longitudinal splitting of the co...A full-scale composite floor plate was tested to investigate the flexural behavior and in-plane effects of the floor slab in a grillage of composite beams that reduces the tendency for longitudinal splitting of the concrete slab along the line of the primary beams. This is important in cases where the steel decking is discontinuous when it is orientated parallel to the beams. In this case, it is important to demonstrate that the amount of transverse reinforcement required to transfer local forces from the shear connectors can be reduced relative to the requirements of Eurocode 4. The mechanism under study involved in-plane compression forces being developed in the slab due to the restraining action of the floor plate, which was held in position by the peripheral composite beams;while the secondary beams acted as transverse ties to resist the forces in the floor plate that would otherwise lead to splitting of the slab along the line of the primary beams. The tendency for cracking along the center line of the primary beam and at the peripheral beams was closely monitored. This is the first large floor plate test that has been carried out under laboratory conditions since the Cardington tests in the early 1990s, although those tests were not carried out to failure. This floor plate test was designed so that the longitudinal force transferred by the primary beams was relatively high (i.e., it was designed for full shear connection), but the transverse reinforcement was taken as the minimum of 0.2% of the concrete area. The test confirmed that the primary beams reached their plastic bending resistance despite the discontinuous decking and transverse reinforcement at the minimum percentage given in Eurocode 4. Based on this test, a reduction factor due to shear connectors at edge beams without U-bars is proposed.展开更多
Good interlayer interface performance is the key to maintaining the stability of CRTSⅡslab ballastless track structure.In a project,the tangential cohesion parameters of CRTSⅡslab ballastless track structure are gen...Good interlayer interface performance is the key to maintaining the stability of CRTSⅡslab ballastless track structure.In a project,the tangential cohesion parameters of CRTSⅡslab ballastless track structure are generally measured by horizontal push plate test,so as to measure the interlayer interface performance.Horizontal push plate contraction scale and full scale tests of CRTSⅡslab ballastless track structure are carried out to obtain the tangential force-displacement relation curve of the interlayer interface,thus obtaining the parameters of cohesion model.A threedimensional progressive damage analysis model for CRTSⅡslab ballastless track structure is established,the whole process inversion of the horizontal push plate test is carried out,and the reliability of the contraction scale test results is verified by means of simulation and comparative analysis of test results.The results show that the greater the tangential stiffness of the interlayer interface of the track structure,the weaker the interlayer deformation coordination capability;the more significant the non-uniformity of the interface damage,the more likely the stress concentration;the greater the fracture toughness,the less likely the disjoint in the interlayer interface of the track structure.展开更多
In this paper, a compression-to-tension conversion technique is developed by applying predominant mode I loading test, using a servo-controlled compression system. The technique is applied to thin mortar plate specime...In this paper, a compression-to-tension conversion technique is developed by applying predominant mode I loading test, using a servo-controlled compression system. The technique is applied to thin mortar plate specimens of different widths that include a prefabricated crack on either a single side to facilitate unilateral crack propagation, or prefabricated cracks positioned on both sides asymmetrically with respect to the specimen midpoint to facilitate bilateral crack propagation under direct tensile stress with a loading rate of 0.001 mm/s. The results show that the main pathways of unilateral crack propagation governing specimen failure are fluctuated locally, but present an approximately straight line overall in the absence of pre-existing internal defects. However, the pathways of bilateral crack propagation are relatively complex, although they present similar characteristics. Analysis results suggest that bilateral crack propagation can be basically divided into three stages, i.e. a stage of linear propagation, a stage representing deviation from the other crack, and a stage where one crack approaches either the other crack or approaches the opposite edge of the specimen, and thereby forming a continuous crack through the specimen. In addition, the stressestrain curves of bilateral crack specimens do not vary significantly around the point of peak stress prior to specimen failure, which means that the specimens do not fail instantaneously.展开更多
The statistical testing models of the plate tectonic units and the hypothesis of their rigidity is presented by using the dense geodetic data, and to a certain extent the established statistic value c...The statistical testing models of the plate tectonic units and the hypothesis of their rigidity is presented by using the dense geodetic data, and to a certain extent the established statistic value can be regarded as a quantitative index to compare the rigidity degrees of different blocks. The several conclusions about the global megaplates and the regional tectonics of China are tested and verified by actual calculations, which testifies the effectiveness of this method in testing the rigidity degree and delineating their boundaries.展开更多
The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate on...The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate only the position at which the strain gauge is attached. The acoustoelastic method is proposed as a method replacing the strain gauge method. However, an ultrasonic sensor with a piezoelectric oscillator requires a coupling medium to inject an ultrasonic wave into a solid material. This condition, due to the error factor of the stress measurement, makes it difficult for the ultrasonic sensor to move on the specimen. We then tried to develop a non-contact stress measurement system during tensile testing using an electromagnetic acoustic transducer (EMAT) with an SH0-plate wave and S0-Lamb wave. The EMAT can measure the propagation time in which the ultrasonic wave travels between a receiver and a transmitter without a coupling medium during the tensile testing and can move easily. The interval between the transmitter and the receiver is 10mm and can be moved along the parallel direction or the vertical direction of the tensile load. The transit time was measured by a cross-correlation method and converted into the stress on the test specimen using the acoustoelastic method. We confirmed that the stress measurement using an SH0-plate wave was superior to that with an S0-Lamb wave.展开更多
基金supported by National Natural Science Foundation of China(Grant Nos.51075012,10772008)Beijing Municipal Natural Science Foundation of China(Grant No.1122005)
文摘The fundamental shear horizontal(SH0) wave has several unique features that are attractive for long-range nondestructive testing(NDT). By a careful design of the geometric configuration, electromagnetic acoustic transducers(EMATs) have the capability to generate a wide range of guided wave modes, such as Lamb waves and shear-horizontal(SH) waves in plates. However, the performance of EMATs is influenced by their parameters. To evaluate the performance of periodic permanent magnet(PPM) EMATs, a distributed-line-source model is developed to calculate the angular acoustic field cross-section in the far-field. Numerical analysis is conducted to investigate the performance of such EMATs with different geometric parameters, such as period and number of magnet arrays, and inner and outer coil widths. Such parameters have a great influence on the directivity of the generated SH0 waves that arises mainly in the amplitude and width of both main and side lobes. According to the numerical analysis, these parameters are optimized to obtain better directivity. Optimized PPM EMATs are designed and used for NDT of strip plates. Experimental results show that the lateral boundary of the strip plate has no perceivable influence on SHO-wave propagation, thus validating their used in NDT. The proposed model predicts the radiation pattern ofPPM EMATs, and can be used for their parameter optimization.
文摘Cohesive element is developed from the Dugdal-Barenblatt model in the field of fracture mechanics. The mechanical constitutive relation of cohesive element can be artificially assumed depending on the specific applications. It has been successfully applied in the study of crystal plasticity/brittle fracture process and decohesion between delaminations. In this paper, tensile experiments of large steel plate with different length of pre-existing cracks are conducted. Based on commercial software ABAQUS, cohesive element is adopted to simulate the tensile tests, and appropriate parameter values are obtained by fitting displacement-force curves. Using these parameters, a numerical method is presented by applying cohesive element to thermo-elastic-plastic finite element method (TEP-FEM) to simulate plate rigid restraint cracking (PRRC) tests. By changing constitutive relation of cohesive element, dimensions of the model and welding conditions, the influence of welding restraint intensity and welding conditions on the crack propagation are discussed, respectively. Three types of welding cold cracking are simulated. Significant influence of welding cold cracking on resistant stress in welding line is captured by this numerical method.
文摘Brucellosis is a zoonotic disease of economic importance. The clinical manifestations vary in humans;therefore a good diagnostic test is required to confirm the disease. The serum tube agglutination (SA) test, though still the most widely test used, can be problematic for the diagnosis of chronic infections. The other supplementary tests, such as the complement fixation (CF) test and ELISA, require special equipment, reagents and trained personnel. The Rose Bengal plate (RBP) test has shown potential as a good rapid diagnostic test. This is a report of serum samples from suspected cases of brucellosis that were tested using the RBP, SA and CF tests. The RBP test was shown to have a better relative sensitivity and as good specificity as the SA when compared with the CF test, and may be a useful initial diagnostic test for hospitals in remote rural areas if properly conducted with well stored antigen.
基金part of a collaborative project between the Steel Construction Institute, the University of Stuttgart, the University of Luxembourg, Arcelor Mittal S.A., and the University of Bradford funded by the European Community’s Research Fund for Coal and Steel (RFSR-CT-2012-00030)
文摘A full-scale composite floor plate was tested to investigate the flexural behavior and in-plane effects of the floor slab in a grillage of composite beams that reduces the tendency for longitudinal splitting of the concrete slab along the line of the primary beams. This is important in cases where the steel decking is discontinuous when it is orientated parallel to the beams. In this case, it is important to demonstrate that the amount of transverse reinforcement required to transfer local forces from the shear connectors can be reduced relative to the requirements of Eurocode 4. The mechanism under study involved in-plane compression forces being developed in the slab due to the restraining action of the floor plate, which was held in position by the peripheral composite beams;while the secondary beams acted as transverse ties to resist the forces in the floor plate that would otherwise lead to splitting of the slab along the line of the primary beams. The tendency for cracking along the center line of the primary beam and at the peripheral beams was closely monitored. This is the first large floor plate test that has been carried out under laboratory conditions since the Cardington tests in the early 1990s, although those tests were not carried out to failure. This floor plate test was designed so that the longitudinal force transferred by the primary beams was relatively high (i.e., it was designed for full shear connection), but the transverse reinforcement was taken as the minimum of 0.2% of the concrete area. The test confirmed that the primary beams reached their plastic bending resistance despite the discontinuous decking and transverse reinforcement at the minimum percentage given in Eurocode 4. Based on this test, a reduction factor due to shear connectors at edge beams without U-bars is proposed.
文摘Good interlayer interface performance is the key to maintaining the stability of CRTSⅡslab ballastless track structure.In a project,the tangential cohesion parameters of CRTSⅡslab ballastless track structure are generally measured by horizontal push plate test,so as to measure the interlayer interface performance.Horizontal push plate contraction scale and full scale tests of CRTSⅡslab ballastless track structure are carried out to obtain the tangential force-displacement relation curve of the interlayer interface,thus obtaining the parameters of cohesion model.A threedimensional progressive damage analysis model for CRTSⅡslab ballastless track structure is established,the whole process inversion of the horizontal push plate test is carried out,and the reliability of the contraction scale test results is verified by means of simulation and comparative analysis of test results.The results show that the greater the tangential stiffness of the interlayer interface of the track structure,the weaker the interlayer deformation coordination capability;the more significant the non-uniformity of the interface damage,the more likely the stress concentration;the greater the fracture toughness,the less likely the disjoint in the interlayer interface of the track structure.
基金support provided by the Strategic Program of Chinese Academy of Sciences (Grant No. XDB10030400)the Hundred Talent Program of Chinese Academy of Sciences (Grant No. Y323081C01)
文摘In this paper, a compression-to-tension conversion technique is developed by applying predominant mode I loading test, using a servo-controlled compression system. The technique is applied to thin mortar plate specimens of different widths that include a prefabricated crack on either a single side to facilitate unilateral crack propagation, or prefabricated cracks positioned on both sides asymmetrically with respect to the specimen midpoint to facilitate bilateral crack propagation under direct tensile stress with a loading rate of 0.001 mm/s. The results show that the main pathways of unilateral crack propagation governing specimen failure are fluctuated locally, but present an approximately straight line overall in the absence of pre-existing internal defects. However, the pathways of bilateral crack propagation are relatively complex, although they present similar characteristics. Analysis results suggest that bilateral crack propagation can be basically divided into three stages, i.e. a stage of linear propagation, a stage representing deviation from the other crack, and a stage where one crack approaches either the other crack or approaches the opposite edge of the specimen, and thereby forming a continuous crack through the specimen. In addition, the stressestrain curves of bilateral crack specimens do not vary significantly around the point of peak stress prior to specimen failure, which means that the specimens do not fail instantaneously.
文摘The statistical testing models of the plate tectonic units and the hypothesis of their rigidity is presented by using the dense geodetic data, and to a certain extent the established statistic value can be regarded as a quantitative index to compare the rigidity degrees of different blocks. The several conclusions about the global megaplates and the regional tectonics of China are tested and verified by actual calculations, which testifies the effectiveness of this method in testing the rigidity degree and delineating their boundaries.
文摘The stress on a test specimen during tensile testing is generally measured by a strain gauge. This method has some problems in that it would influence the measurement conditions of the tensile test and can evaluate only the position at which the strain gauge is attached. The acoustoelastic method is proposed as a method replacing the strain gauge method. However, an ultrasonic sensor with a piezoelectric oscillator requires a coupling medium to inject an ultrasonic wave into a solid material. This condition, due to the error factor of the stress measurement, makes it difficult for the ultrasonic sensor to move on the specimen. We then tried to develop a non-contact stress measurement system during tensile testing using an electromagnetic acoustic transducer (EMAT) with an SH0-plate wave and S0-Lamb wave. The EMAT can measure the propagation time in which the ultrasonic wave travels between a receiver and a transmitter without a coupling medium during the tensile testing and can move easily. The interval between the transmitter and the receiver is 10mm and can be moved along the parallel direction or the vertical direction of the tensile load. The transit time was measured by a cross-correlation method and converted into the stress on the test specimen using the acoustoelastic method. We confirmed that the stress measurement using an SH0-plate wave was superior to that with an S0-Lamb wave.