To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic prior...To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic priority to assign priorities for tasks. By assigning higher priorities to the aperiodic soft real-time jobs with longer release intervals, it guarantees the executions for periodic hard real-time tasks and further probabilistically guarantees the executions for aperiodic soft real-time tasks. The schedulability test approach for the LRIF algorithm is presented. The implementation issues of the LRIF algorithm are also discussed. Simulation result shows that LRIF obtains better schedulable performance than the maximum urgency first (MUF) algorithm, the earliest deadline first (EDF) algorithm and EDF for hybrid tasks. LRIF has great capability to schedule both periodic hard real-time and aperiodic soft real-time tasks.展开更多
As the technology of IP-core-reused has been widely used, a lot of intellectual property (IP) cores have been embedded in different layers of system-on-chip (SOC). Although the cycles of development and overhead a...As the technology of IP-core-reused has been widely used, a lot of intellectual property (IP) cores have been embedded in different layers of system-on-chip (SOC). Although the cycles of development and overhead are reduced by this method, it is a challenge to the SOC test. This paper proposes a scheduling method based on the virtual flattened architecture for hierarchical SOC, which breaks the hierarchical architecture to the virtual flattened one. Moreover, this method has more advantages compared with the traditional one, which tests the parent cores and child cores separately. Finally, the method is verified by the ITC'02 benchmark, and gives good results that reduce the test time and overhead effectively.展开更多
With an advanced foreign hydraulic automatic transmission as the objective,an analytical method for the gear-shifting schedule is proposed.First the demanded maximum gradient of test is estimated.Then a test scheme an...With an advanced foreign hydraulic automatic transmission as the objective,an analytical method for the gear-shifting schedule is proposed.First the demanded maximum gradient of test is estimated.Then a test scheme and analytical procedure is formulated by initial test and hypothetical shift parameters.Finally through gear-shifting tests under different road conditions,load,accelerator pedal position limitation,throttle opening and output shaft speed are found to be the gear-shifting parameters.Under a common road condition,the gear-shifting schedule is a double-parameter schedule.Based on the driver's demands on braking and dynamic performance,different shift schedules are made under downhill,uphill and quick releasing acceleration pedal conditions.The operation criteria of down-shift schedule on abrupt grade are proposed.展开更多
Production flow rates are crucial to make operational decisions,monitor,manage,and optimize oil and gas fields.Flow rates also have a financial importance to correctly allocate production to fiscal purposes required b...Production flow rates are crucial to make operational decisions,monitor,manage,and optimize oil and gas fields.Flow rates also have a financial importance to correctly allocate production to fiscal purposes required by regulatory agencies or to allocate production in fields owned by multiple operators.Despite its significance,usually only the total field production is measured in real time,which requires an alternative way to estimate wells'production.To address these challenges,this work presents a back allocation methodology that leverages real-time instrumentation,simulations,algorithms,and mathe-matical programming modeling to enhance well monitoring and assist in well test scheduling.The methodology comprises four modules:simulation,classification,error calculation,and optimization.These modules work together to characterize the flowline,wellbore,and reservoir,verify simulation outputs,minimize errors,and calculate flow rates while honoring the total platform flow rate.The well status generated through the classification module provides valuable information about the current condition of each well(i.e.if the well is deviating from the latest well test parameters),aiding in decision-making for well testing scheduling and prioritizing.The effectiveness of the methodology is demonstrated through its application to a representative offshore oil field with 14 producing wells and two years of daily production data.The results highlight the robustness of the methodology in properly classifying the wells and obtaining flow rates that honor the total platform flow rate.Furthermore,the methodology supports well test scheduling and provides reliable indicators for well conditions.By uti-lizing real-time data and advanced modeling techniques,this methodology enhances production monitoring and facilitates informed operational decision-making in the oil and gas industry.展开更多
基金The Natural Science Foundation of Jiangsu Province(NoBK2005408)
文摘To fulfill the requirements for hybrid real-time system scheduling, a long-release-interval-first (LRIF) real-time scheduling algorithm is proposed. The algorithm adopts both the fixed priority and the dynamic priority to assign priorities for tasks. By assigning higher priorities to the aperiodic soft real-time jobs with longer release intervals, it guarantees the executions for periodic hard real-time tasks and further probabilistically guarantees the executions for aperiodic soft real-time tasks. The schedulability test approach for the LRIF algorithm is presented. The implementation issues of the LRIF algorithm are also discussed. Simulation result shows that LRIF obtains better schedulable performance than the maximum urgency first (MUF) algorithm, the earliest deadline first (EDF) algorithm and EDF for hybrid tasks. LRIF has great capability to schedule both periodic hard real-time and aperiodic soft real-time tasks.
基金Project supported by the Applied Materials Foundation Project of Science and Technology Commission of Shanghai Mu-nicipality (Grant No.08700741000)the System Design on Chip Project of Science and Technology Commission of Shanghai Municipality (Grant No.08706201000)+1 种基金the Leading Academic Discipline Project of Shanghai Municipal Education Committee(Grant No.J50104)the Innovation Foundation Project of Shanghai University
文摘As the technology of IP-core-reused has been widely used, a lot of intellectual property (IP) cores have been embedded in different layers of system-on-chip (SOC). Although the cycles of development and overhead are reduced by this method, it is a challenge to the SOC test. This paper proposes a scheduling method based on the virtual flattened architecture for hierarchical SOC, which breaks the hierarchical architecture to the virtual flattened one. Moreover, this method has more advantages compared with the traditional one, which tests the parent cores and child cores separately. Finally, the method is verified by the ITC'02 benchmark, and gives good results that reduce the test time and overhead effectively.
基金Supported by the National High Technology Research and Development Program of China(863 Program)(2012AA112101)
文摘With an advanced foreign hydraulic automatic transmission as the objective,an analytical method for the gear-shifting schedule is proposed.First the demanded maximum gradient of test is estimated.Then a test scheme and analytical procedure is formulated by initial test and hypothetical shift parameters.Finally through gear-shifting tests under different road conditions,load,accelerator pedal position limitation,throttle opening and output shaft speed are found to be the gear-shifting parameters.Under a common road condition,the gear-shifting schedule is a double-parameter schedule.Based on the driver's demands on braking and dynamic performance,different shift schedules are made under downhill,uphill and quick releasing acceleration pedal conditions.The operation criteria of down-shift schedule on abrupt grade are proposed.
文摘Production flow rates are crucial to make operational decisions,monitor,manage,and optimize oil and gas fields.Flow rates also have a financial importance to correctly allocate production to fiscal purposes required by regulatory agencies or to allocate production in fields owned by multiple operators.Despite its significance,usually only the total field production is measured in real time,which requires an alternative way to estimate wells'production.To address these challenges,this work presents a back allocation methodology that leverages real-time instrumentation,simulations,algorithms,and mathe-matical programming modeling to enhance well monitoring and assist in well test scheduling.The methodology comprises four modules:simulation,classification,error calculation,and optimization.These modules work together to characterize the flowline,wellbore,and reservoir,verify simulation outputs,minimize errors,and calculate flow rates while honoring the total platform flow rate.The well status generated through the classification module provides valuable information about the current condition of each well(i.e.if the well is deviating from the latest well test parameters),aiding in decision-making for well testing scheduling and prioritizing.The effectiveness of the methodology is demonstrated through its application to a representative offshore oil field with 14 producing wells and two years of daily production data.The results highlight the robustness of the methodology in properly classifying the wells and obtaining flow rates that honor the total platform flow rate.Furthermore,the methodology supports well test scheduling and provides reliable indicators for well conditions.By uti-lizing real-time data and advanced modeling techniques,this methodology enhances production monitoring and facilitates informed operational decision-making in the oil and gas industry.