期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
Seismic performance evaluation of water supply pipes installed in a full-scale RC frame structure based on a shaking table test
1
作者 Wu Houli Guo Endong +2 位作者 Wang Jingyi Dai Xin Dai Chenxi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期163-178,共16页
As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scal... As an important part of nonstructural components,the seismic response of indoor water supply pipes deserves much attention.This paper presents shaking table test research on water supply pipes installed in a full-scale reinforced concrete(RC)frame structure.Different material pipes and different methods for penetrating the reinforced concrete floors are combined to evaluate the difference in seismic performance.Floor response spectra and pipe acceleration amplification factors based on test data are discussed and compared with code provisions.A seismic fragility study of displacement demand is conducted based on numerical simulation.The acceleration response and displacement response of different combinations are compared.The results show that the combination of different pipe materials and different passing-through methods can cause obvious differences in the seismic response of indoor riser pipes. 展开更多
关键词 water supply pipe different materials shaking table test amplification factor seismic fragility
下载PDF
A novel control strategy for reproducing the floor motions of high-rise buildings by earthquake-simulating shake tables
2
作者 Yuteng Cao Zhe Qu Xiaodong Ji 《Earthquake Research Advances》 CSCD 2024年第1期67-75,共9页
To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Tab... To enable the experimental assessment of the seismic performance of full-scale nonstructural elements with multiple engineering parameters(EDPs),a three-layer testbed named Nonstructural Element Simulator on Shake Table(NEST)has been developed.The testbed consists of three consecutive floors of steel structure.The bottom two floors provide a space to accommodate a full-scale room.To fully explore the flexibility of NEST,we propose a novel control strategy to generate the required shake table input time histories for the testbed to track the target floor motions of the buildings of interest with high accuracy.The control strategy contains two parts:an inverse dynamic compensation via simulation of feedback control systems(IDCS)algorithm and an offline iteration procedure based on a refined nonlinear numerical model of the testbed.The key aspects of the control strategy were introduced in this paper.Experimental tests were conducted to simulate the seismic responses of a full-scale office room on the 21^(st)floor of a 42-story high-rise building.The test results show that the proposed control strategy can reproduce the target floor motions of the building of interest with less than 20%errors within the specified frequency range. 展开更多
关键词 Shake table test Nonstructural element High-rise building Open-loop IDCS algorithm Off-line iteration
下载PDF
Seismic response of underground utility tunnels: shaking table testing and FEM analysis 被引量:32
3
作者 Jiang Luzhen Chen Jun Li Jie 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第4期555-567,共13页
Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic per... Underground utility tunnels are widely used in urban areas throughout the world for lifeline networks due to their easy maintenance and environmental protection capabilities. However, knowledge about their seismic performance is still quite limited and seismic design procedures are not included in current design codes. This paper describes a series of shaking table tests the authors performed on a scaled utility tunnel model to explore its performance under earthquake excitation. Details of the experimental setup are first presented focusing on aspects such as the design of the soil container, scaled structural model, sensor array arrangement and test procedure. The main observations from the test program, including structural response, soil response, soil-structure interaction and earth pressure, are summarized and discussed. Further, a finite element model (FEM) of the test utility tunnel is established where the nonlinear soil properties are modeled by the Drucker- Prager constitutive model; the master-slave surface mechanism is employed to simulate the soil-structure dynamic interaction; and the confining effect of the laminar shear box to soil is considered by proper boundary modeling. The results from the numerical model are compared with experiment measurements in terms of displacement, acceleration and amplification factor of the structural model and the soil. The comparison shows that the numerical results match the experimental measurements quite well. The validated numerical model can be adopted for further analysis. 展开更多
关键词 lifeline system utility tunnel shaking table test finite element method soil-structure interaction
下载PDF
Investigation into dynamic response of regional sites to seismic waves using shaking table testing 被引量:3
4
作者 Li Yadong Cui Jie +1 位作者 Guan Tianding Jing Liping 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第3期411-421,共11页
This study addresses the changes in acceleration,pore water pressure and Fourier spectrums of different types of seismic waves with various amplitudes via large-scale shaking table tests from two sites:a sand-containi... This study addresses the changes in acceleration,pore water pressure and Fourier spectrums of different types of seismic waves with various amplitudes via large-scale shaking table tests from two sites:a sand-containing regional site and an all-clay site.Comparative analyses of the test results show that the pore water pressures in sand-soil layers of the regional site initially increase and then decrease as the amplitudes of the seismic accelerations increase.The actions of the vertical and vibrational seismic waves contribute to greater pore water pressures.The amplification coefficient of the sand-layer regional site becomes smaller as the seismic waves grow stronger,so that both sites are capable of filtering high frequencies and amplifying low frequencies of seismic waves.This is more apparent with the increase in the peak value of the acceleration,and the natural vibration frequencies of both sites decrease with the transmission of the seismic waves from the basement to the ground surface.The decreasing frequency value of the sand-containing regional site is smaller than that of the all-clay site. 展开更多
关键词 shaking table test regional site all-clay site SEI
下载PDF
Shake table testing of a multi-tower connected hybrid structure 被引量:2
5
作者 Zhou Ying Lu Xilin +1 位作者 Lu Wensheng He Zhijun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2009年第1期47-59,共13页
Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building w... Many single-tower reinforced concrete core wall-steel frame (RCC-SF) buildings have been built in China, but there are no buildings of different-height multi-tower hybrid system. A multi-tower RCC-SF tall building was thus studied because of its structural complexity and irregularity. First, a 1/15 scaled model structure was designed and tested on the shake table under minor, moderate, and major earthquake levels. Then, the dynamic responses of the model structure were interpreted to those of the prototype structure according to the similitude theory. Experimental results demonstrate that, despite the complexity of the structure, the lateral deformation bends as the "bending type" and the RC core walls contribute more than the steel frames to resist seismic loads. The maximum inter-story drift of the complex building under minor earthquakes is slightly beyond the elastic limitation specified in the Chinese code, and meets code requirements under major earthquakes. From the test results some suggestions are provided that could contribute favorable effect on the seismic behavior and the displacement of the building. 展开更多
关键词 complex building hybrid structure scaled model shake table testing seismic performance
下载PDF
Shaking table test and cumulative deformation evaluation analysis of a tunnel across the hauling sliding surface
6
作者 Lifang Pai Honggang Wu Xu Wang 《Deep Underground Science and Engineering》 2023年第4期371-393,共23页
To explore the cumulative deformation effect of the dynamic response of a tunnel crossing the hauling sliding surface under earthquakes,the shaking table test was conducted in this study.Combined with the numerical ca... To explore the cumulative deformation effect of the dynamic response of a tunnel crossing the hauling sliding surface under earthquakes,the shaking table test was conducted in this study.Combined with the numerical calculations,this study proposed magnification of the Arias intensity(MIa)to characterize the overall local deformation damage of the tunnel lining in terms of the deformation characteristics,frequency domain,and energy.Using the time‐domain analysis method,the plastic effect coefficient(PEC)was proposed to characterize the degree of plastic deformation,and the applicability of the seismic cumulative failure effect(SCFE)was discussed.The results show that the low‐frequency component(f1 and f2≤10 Hz)and the high‐frequency component(f3 and f4>10 Hz)acceleration mainly cause global and local deformation of the tunnel lining.The local deformation caused by the high‐frequency wave has an important effect on the seismic damage of the lining.The physical meaning of PEC is more clearly defined than that of the residual strain,and the SCFE of the tunnel lining can also be defined.The SCFE of the tunnel lining includes the elastic deformation effect stage(<0.15g),the elastic–plastic deformation effect stage(0.15g–0.30g),and the plastic deformation effect stage(0.30g–0.40g).This study can provide valuable theoretical and technical support for the construction of traffic tunnels in high‐intensity earthquake areas. 展开更多
关键词 magnification of Arias intensity plastic effect coefficient seismic action seismic cumulative failure effect shaking table test tunnel engineering
下载PDF
Dynamic response and failure process of horizontal-layered fractured structure rock slope under strong earthquake
7
作者 WANG Tong LIU Xianfeng +5 位作者 HOU Zhaoxu XU Jiahang ZHANG Jun YUAN Shengyang JIANG Guanlu HU Jinshan 《Journal of Mountain Science》 SCIE CSCD 2024年第3期882-900,共19页
Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the d... Rock slope with horizontal-layered fractured structure(HLFS)has high stability in its natural state.However,a strong earthquake can induce rock fissure expansion,ultimately leading to slope failure.In this study,the dynamic response,failure mode,and spectral characteristics of rock slope with HLFS under strong earthquake conditions were investigated based on the large-scale shaking table model test.On this basis,multiple sets of numerical calculation models were further established by UDEC discrete element program.Five influencing factors were considered in the parametric study of numerical simulations,including slope height,slope angle,bedding-plane spacing and secondary joint spacing as well as bedrock dip angle.The results showed that the failure process of rock slope with HLFS under earthquake action is mainly divided into four phases,i.e.,the tensile crack of the slope shoulder joints and shear dislocation at the top bedding plane,the extension of vertical joint cracks and increase of shear displacement,the formation of step-through sliding surfaces and the instability,and finally collapse of fractured rock mass.The acceleration response of slopes exhibits elevation amplification effect and surface effect.Numerical simulations indicate that the seismic stability of slopes with HLFS exhibits a negative correlation with slope height and angle,but a positive correlation with bedding-plane spacing,joint spacing,and bedrock dip angle.The results of this study can provide a reference for seismic stability evaluation of weathered rock slopes. 展开更多
关键词 Seismic behavior Horizontal layered Weathered rock slope Shaking table test Failure mode
下载PDF
Experimental study on seismic reinforcement of bridge foundation on silty clay landslide with inclined interlayer
8
作者 Lei Da Xiao Hanmo +3 位作者 Ran Jianhua Luo Bin Jiang Guanlu Xue Tianlang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期193-207,共15页
A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and ... A shaking table test for a bridge foundation reinforced by anti-slide piles on a silty clay landslide model with an inclined interlayer was performed.The deformation characteristics of the bridge foundation piles and anti-slide piles were analyzed in different loading conditions.The dynamic response law of a silty clay landslide with an inclined interlayer was summarized.The spacing between the rear anti-slide piles and bridge foundation should be reasonably controlled according to the seismic fortification requirements,to avoid the two peaks in the forced deformation of the bridge foundation piles.The“blocking effect”of the bridge foundation piles reduced the deformation of the forward anti-slide piles.The stress-strain response of silty clay was intensified as the vibration wave field appeared on the slope.Since the vibration intensified,the thrust distribution of the landslide underwent a process of shifting from triangle to inverted trapezoid,the difference in the acceleration response between the bearing platform and silty clay landslide tended to decrease,and the spectrum amplitude near the natural vibration frequency increased.The rear anti-slide piles were able to slow down the shear deformation of the soil in front of the piles and avoid excessive acceleration response of the bridge foundation piles. 展开更多
关键词 silty clay landslide inclined interlayer shaking table test anti-slide pile bridge foundation pile
下载PDF
Study on a conical bearing for acceleration-sensitive equipment
9
作者 Pang Hui Xu Wen +1 位作者 Dai Junwu Jiang Tao 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期103-128,共26页
Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-s... Seismic isolation effectively reduces seismic demands on building structures by isolating the superstructure from ground vibrations during earthquakes.However,isolation strategies give less attention to acceleration-sensitive systems or equipment.Meanwhile,as the isolation layer’s displacement grows,the stiffness and frequency of traditional rolling and sliding isolation bearings increases,potentially causing self-centering and resonance concerns.As a result,a new conical pendulum bearing has been selected for acceleration-sensitive equipment to increase self-centering capacity,and additional viscous dampers are incorporated to enhance system damping.Moreover,the theoretical formula for conical pendulum bearings is supplied to analyze the device’s dynamic parameters,and shake table experiments are used to determine the proposed device’s isolation efficiency under various conditions.According to the test results,the newly proposed devices have remarkable isolation performance in terms of minimizing both acceleration and displacement responses.Finally,a numerical model of the isolation system is provided for further research,and the accuracy is demonstrated by the aforementioned experiments. 展开更多
关键词 seismic isolation acceleration-sensitive equipment the conical pendulum bearing shake table tests isolation performance numerical model
下载PDF
Fundamental Study on Response Properties of Structures Constructed on Lunar Regolith
10
作者 Yuji Miyamoto Takaharu Nakano Toshio Kobayashi 《Open Journal of Earthquake Research》 2024年第1期27-40,共14页
The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surfac... The Artemis Program, for constructing the lunar base, is in progress. How to design and construct architectural and civil engineering structures in the lunar environment has become an important issue. The lunar surface is covered with soft sand, called regolith, and it is required to protect lunar bases and structures, as well as internal precision equipment, against vibrational disturbances such as moonquakes and meteorite collisions. Therefore, in this study, the static and cyclic triaxial compression tests of the regolith simulant were conducted. The reference strain and equivalent damping factor of the regolith simulant were smaller compared to sandy soil on Earth. In addition, a shaking table test using model specimens was conducted on the response properties of regolith ground alone and structures set on regolith ground. The buried foundation and pile foundation notably suppressed the horizontal response attributed to the rocking component compared to a direct foundation. 展开更多
关键词 Lunar Development REGOLITH Soil-Structure Interaction Triaxial Compression Test Shaking table Test
下载PDF
Shaking table test and numerical analysis of offshore wind turbine tower systems controlled by TLCD 被引量:15
11
作者 Chen Jianbing Liu Youkun Bai Xueyuan 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期55-75,共21页
A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting ... A wind turbine system equipped with a tuned liquid column damper (TLCD) is comprehensively studied via shaking table tests using a 1/13-scaled model. The effects of wind and wave actions are considered by inputting response- equivalent accelerations on the shaking table. The test results show that the control effect of the TLCD system is significant in reducing the responses under both wind-wave equivalent loads and ground motions, but obviously varies for different inputs, Further, a blade-hub-tower integrated numerical model for the wind turbine system is established. The model is capable of considering the rotational effect of blades by combining Kane's equation with the finite element method. The responses of the wind tower equipped with TLCD devices are numerically obtained and compared to the test results, showing that under both controlled and uncontrolled conditions with and without blades' rotation, the corresponding responses exhibit good agreement. This demonstrates that the proposed numerical model performs well in capturing the wind-wave coupled response of the offshore wind turbine systems under control. Both numerical and experimental results show that the TLCD system can significantly reduce the structural response and thus improve the safety and serviceability of the offshore wind turbine tower systems. Additional issues that require further study are discussed. 展开更多
关键词 offshore wind turbine shaking table test TLCD numerical model vibration control
下载PDF
Shake table tests of suspended ceilings to simulate the observed damage in the M_s 7.0 Lushan earthquake, China 被引量:14
12
作者 Wang Duozhi Dai Junwu +1 位作者 Qu Zhe Ning Xiaoqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2016年第2期239-249,共11页
Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely u... Severe damage to suspended ceilings of metal grids and lay-in panels was observed in public buildings during the 2013 M7.0 Lushan earthquake in China. Over the past several years, suspended ceilings have been widely used practice in public buildings throughout China, including government offices, schools and hospitals. To investigate the damage mechanism of suspended ceilings, a series of three-dimensional shake table tests was conducted to reproduce the observed damage. A full-scale reinforced concrete frame was constructed as the testing frame for the ceiling, which was single-story and infilled with brick masonry walls to represent the local construction of low-rise buildings. In general, the ceiling in the tests exhibited similar damage phenomena as the field observations, such as higher vulnerability of perimeter elements and extensive damage to the cross runners. However, it exhibited lower fragility in terms of peak ground/roof accelerations at the initiation of damage. Further investigations are needed to clarify the reasons for this behavior. 展开更多
关键词 suspended ceiling Lushan earthquake Wenchuan earthquake shake table test wall closure acoustic mineral fiber panel
下载PDF
Shake table test of soil-pile groups-bridge structure interaction in liquefiable ground 被引量:15
13
作者 Tang Liang Ling Xianzhang +2 位作者 Xu Pengju Gao Xia Wang Dongsheng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期39-50,共12页
This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a... This paper describes a shake table test study on the seismic response of low-cap pile groups and a bridge structure in liquefiable ground. The soil profile, contained in a large-scale laminar shear box, consisted of a horizontally saturated sand layer overlaid with a silty clay layer, with the simulated low-cap pile groups embedded. The container was excited in three E1 Centro earthquake events of different levels. Test results indicate that excessive pore pressure (EPP) during slight shaking only slightly accumulated, and the accumulation mainly occurred during strong shaking. The EPP was gradually enhanced as the amplitude and duration of the input acceleration increased. The acceleration response of the sand was remarkably influenced by soil liquefaction. As soil liquefaction occurred, the peak sand displacement gradually lagged behind the input acceleration; meanwhile, the sand displacement exhibited an increasing effect on the bending moment of the pile, and acceleration responses of the pile and the sand layer gradually changed from decreasing to increasing in the vertical direction from the bottom to the top. A jump variation of the bending moment on the pile was observed near the soil interface in all three input earthquake events. It is thought that the shake table tests could provide the groundwork for further seismic performance studies of low-cap pile groups used in bridges located on liquefiable groun. 展开更多
关键词 liquefiable ground seismic soil-pile-structure interaction pile groups of bridge shake table test
下载PDF
Shaking table experimental study of recycled concrete frame-shear wall structures 被引量:8
14
作者 Zhang Jianwei Cao Wanlin +2 位作者 Meng Shaobin Yu Cheng Dong Hongying 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第2期257-267,共11页
In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concea... In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fi ne aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings. 展开更多
关键词 recycled concrete frame-shear wall concealed bracings shaking table test nonlinear time-history response analysis
下载PDF
Shaking table test and numerical analysis of a 1:12 scale model of a special concentrically braced steel frame with pinned connections 被引量:7
15
作者 Yu Haifeng Zhang Wenyuan +1 位作者 Zhang Yaochun Sun Yusong 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第1期51-63,共13页
This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical ... This paper describes shaking table tests of a 1:12 scale model of a special concentrically braced steel frame with pinned connections, which was fabricated according to a one-bay braced frame selected from a typical main factory building of a large thermal power plant. In order to investigate the seismic performance of this type of structure, several ground motion accelerations with different levels for seismic intensity Ⅷ, based on the Chinese Code for Seismic Design of Buildings, were selected to excite the model. The results show that the design methods of the members and the connections are adequate and that the structural system will perform well in regions of high seismicity. In addition to the tests, numerical simulations were also conducted and the results showed good agreement with the test results. Thus, the numerical model is shown to be accurate and the beam element can be used to model this structural system. 展开更多
关键词 concentrically braced steel frame pinned connections shaking table test numerical analysis seismic performance
下载PDF
Shaking table tests and dynamic analyses of masonry wall buildings with frame-shear walls at lower stories 被引量:4
16
作者 Xiong Lihong David Xiong +1 位作者 Wu Ruifeng Xia Jingqian 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2008年第3期271-283,共13页
This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test result... This paper describes shaking table tests of three eight-story building models: all are masonry structures in the upper stories, with or without frame-shear walls of one- or two- stories at the bottom. The test results of damage characteristics and seismic responses are provided and compared. Then, nonlinear response analyses are conducted to examine the reliability of the dynamic analysis. Finally, many nonlinear response analyses are performed and it is concluded that for relatively hard sites under a certain lateral stiffness ratio (i.e., the ratio of the stiffness of the lowest upper masonry story to that of the frame- shear wall story), the masonry structure with one-story frame-shear wall at the bottom performs better than a structure built entirely of masonry, and a masonry structure with frame-shear wall of two stories performs better than with one-story frame- shear wall. In relatively soft soil conditions, all three structures have similar performane. In addition, some suggestions that could be helpful for design of masonry structures with ground story of frame-shear wall structure in seismic intensity region VII, such as the appropriate lateral stiffness ratio, shear force increase factor of the frame-shear wall story, and permissible maximum height of the building, are proposed. 展开更多
关键词 masonry structure soft story seismic performance shaking table test nonlinear time history analysis
下载PDF
Shaking table test of seismic responses of anchor cable and lattice beam reinforced slope 被引量:3
17
作者 ZHANG Jian-jing NIU Jia-yong +2 位作者 FU Xiao CAO Li-cong XIE Qiang 《Journal of Mountain Science》 SCIE CSCD 2020年第5期1251-1268,共18页
As a combined supporting structure,the anchor cable and lattice beam have a complex interaction with the slope body.In order to investigate the seismic behaviors of the slope reinforced by anchor cable and lattice bea... As a combined supporting structure,the anchor cable and lattice beam have a complex interaction with the slope body.In order to investigate the seismic behaviors of the slope reinforced by anchor cable and lattice beam,a largescale shaking table test was carried out on a slope model(geometric scale of 1:20)by applying recorded and artificial seismic waves with different amplitudes.The acceleration and displacement of the slope,the displacement of lattice beam and the axial force of anchor cable were obtained to study the interaction between the slope and the supporting structure.The test results show that:(1)the acceleration responses of the slope at different relative elevations display obvious nonlinear characteristics with increasing of the peak ground acceleration(PGA)of the inputted seismic waves,and the weak intercalated layer has a stronger effect on acceleration amplification at the upper part of the slope than that at the lower part of the slope;(2)the frequency component near the second dominant frequency is significantly magnified by the interaction between the slope and the supporting structure;(3)the anchor cables at the upper part of the slope have larger peak and residual axial forces than that at the lower part of the slope,and the prestress loss of the anchor cable first occurs at the top of the slope and then passes down;(4)the peak and residual displacements inside the slope and on the lattice beam increase with the increase of relative elevation.When the inputted PGA is not greater than 0.5 g,the combined effect of anchor cable and lattice beam is remarkable for stabilizing the middle and lower parts of the potential sliding body.The research results can provide a reference for the seismic design of such slope and the optimization of supporting structure. 展开更多
关键词 Earthquake engineering Shaking table test Anchor cable Lattice beam Dynamic response
下载PDF
Shaking table test and dynamic response prediction on an earthquake-damaged RC building 被引量:3
18
作者 叶献国 钱稼茹 李康宁 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2004年第2期205-214,共10页
This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model.The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthqu... This paper presents the results from shaking table tests of a one-tenth-scale reinforced concrete (RC) building model.The test model is a protype of a building that was seriously damaged during the 1985 Mexico earthquake.The input ground excitation used during the test was from the records obtained near the site of the prototype building during the 1985 and 1995 Mexico earthquakes.The tests showed that the damage pattern of the test model agreed well with that of the prototype building.Analytical prediction of earthquake response has been conducted for the prototype building using a sophisticated 3-D frame model.The input motion used for the dynamic analysis was the shaking table test measurements with similarity transformation.The comparison of the analytical results and the shaking table test results indicates that the response of the RC building to minor and the moderate earthquakes can be predicated well.However,there is difference between the predication and the actual response to the major earthquake. 展开更多
关键词 RC building shaking table test seismic response inelastic dynamic analysis
下载PDF
Shaking table test for reinforcement of soil slope with multiple sliding surfaces by reinforced double-row anti-slide piles 被引量:3
19
作者 WU Hong-gang PAI Li-fang 《Journal of Mountain Science》 SCIE CSCD 2022年第5期1419-1436,共18页
Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such larg... Despite the continuous advancements of engineering construction in high-intensity areas,many engineering landslides are still manufactured with huge thrust force,and double-row piles are effective to control such large landslides.In this study,large shaking table test were performed to test and obtain multi-attribute seismic data such as feature image,acceleration,and dynamic soil pressure.Through the feature image processing analysis,the deformation characteristics for the slope reinforced by double-row piles were revealed.By analyzing the acceleration and the dynamic soil pressure time domain,the spatial dynamic response characteristics were revealed.Using Fast Fourier Transform and half-power bandwidth,the damping ratio of acceleration and dynamic soil pressure was obtained.Following that,the Seism Signal was used to calculate the spectral displacement of the accelerations to obtain the regional differences of spectral displacement.The results showed that the overall deformation mechanism of the slope originates from tension failure in the soil mass.The platform at the back of the slope was caused by seismic subsidence,and the peak acceleration ratio was positively correlated with the relative pile heights.The dynamic soil pressure of the front row piles showed an inverted"K"-shaped distribution,but that of the back row piles showed an"S"-shaped distribution.The predominant frequency of acceleration was 2.16 Hz,and the main frequency band was 0.7-6.87 Hz;for dynamic soil pressure,the two parameters became 1.15 Hz and 0.5-6.59 Hz,respectively.In conclusion,dynamic soil pressure was more sensitive to dampening effects than acceleration.Besides,compared to acceleration,dynamic soil pressure exhibited larger loss factors and lower resonance peaks.Finally,back row pile heads were highly sensitive to spectral displacement compared to front row pile heads.These findings may be of reference value for future seismic designs of double-row piles. 展开更多
关键词 Double row anti-slide piles multislide surface landslide Shaking table test ACCELERATION Dynamic soil pressure Dynamic response characteristic
下载PDF
Shaking table comparative test and associated study of a stepped wall-frame structure 被引量:3
20
作者 Xu Weixiao Sun Jingjiang +1 位作者 Yang Weisong Du Ke 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2014年第3期471-485,共15页
A new structural system called a stepped wall-frame structure is proposed in this study to solve the bottom yielding problem of RC frames, which widely occurred during previous earthquakes such as thc Wcnchuan and Yus... A new structural system called a stepped wall-frame structure is proposed in this study to solve the bottom yielding problem of RC frames, which widely occurred during previous earthquakes such as thc Wcnchuan and Yushu earthquakes in China. A 1/5 scale ordinary RC frame model and a stepped wall-frame model were subjected to shake table motions together to study the seismic behavior of the new structural system. This paper presents the dynamic characteristics, the seismic responses and the failure and collapse mechanism of the two models under low, moderate and high intensity shaking. The test results and further analysis demonstrate that the seismic performance of stepped wall-frame structures is superior to ordinary RC frames in terms of the well-controlled deformation pattern and more uniformly distributed damage. The stepped wall can effectively suppress the bottom yielding mechanism, and is simple, economical and practical tbr engineering practice. 展开更多
关键词 stepped wall-flame strt cture damage mechanism control shake table test drift ratio collapse mechanism
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部