An effective approach, mapping the texture for building model based on the digital photogrammetric theory, is proposed. The easily-acquired image sequences from digital video camera on helicopter are used as texture r...An effective approach, mapping the texture for building model based on the digital photogrammetric theory, is proposed. The easily-acquired image sequences from digital video camera on helicopter are used as texture resource, and the correspondence between the space edge in building geometry model and its line feature in image sequences is determined semi-automatically. The experimental results in production of three-dimensional data for car navigation show us an attractive future both in efficiency and effect.展开更多
manufacturing(AM)technologies have been recognized for their capability to build complex components and hence have ofered more freedom to designers for a long time.The ability to directly use a computer-aided design(C...manufacturing(AM)technologies have been recognized for their capability to build complex components and hence have ofered more freedom to designers for a long time.The ability to directly use a computer-aided design(CAD)model has allowed for fabricating and realizing complicated components,monolithic design,reducing the number of components in an assembly,decreasing time to market,and adding performance or comfort-enhancing functionalities.One of the features that can be introduced for boosting a component functionality using AM is the inclusion of surface texture on a given component.This inclusion is usually a difcult task as creating a CAD model resolving fne details of a given texture is difcult even using commercial software packages.This paper develops a methodology to include texture directly on the CAD model of a target surface using a patch-based sampling texture synthesis algorithm,which can be manufactured using AM.Input for the texture generation algorithm can be either a physical sample or an image with heightmap information.The heightmap information from a physical sample can be obtained by 3D scanning the sample and using the information from the acquired point cloud.After obtaining the required inputs,the patches are sampled for texture generation according to non-parametric estimation of the local conditional Markov random feld(MRF)density function,which helps avoid mismatched features across the patch boundaries.While generating the texture,a design constraint to ensure AM producibility is considered,which is essential when manufacturing a component using,e.g.,Fused Deposition Melting(FDM)or Laser Powder Bed Fusion(LPBF).The generated texture is then mapped onto the surface using the developed distance and angle preserving mapping algorithms.The implemented algorithms can be used to map the generated texture onto a mathematically defned surface.This paper maps the textures onto fat,curved,and sinusoidal surfaces for illustration.After the texture mapping,a stereolithography(STL)model is generated with the desired texture on the target surface.The generated STL model is printed using FDM technology as a fnal step.展开更多
Texture mapping is an important technique for high -quality image generation in computer graphics. In this paper, the shortcoming of the traditional texture mapping approaches is analysed and a general bidirectional t...Texture mapping is an important technique for high -quality image generation in computer graphics. In this paper, the shortcoming of the traditional texture mapping approaches is analysed and a general bidirectional texture mapping method is proposed. Based on the bidirectional mapping, an algorithm for mapping an image to an arbitrary polygon in 3D space is given.展开更多
With the advancement of technology and the development of cities,urban planning and management methods are also constantly improving.From paper-based assignments to modern digitization,new technologies have enabled mo...With the advancement of technology and the development of cities,urban planning and management methods are also constantly improving.From paper-based assignments to modern digitization,new technologies have enabled more efficient design and management for cities.3D modeling can used to simulate the urban environment,which can assist in urban planning and management.However,large-scale modeling cannot be achieved through existing modeling methods,and there are still some shortcomings in the maintenance of the model.Therefore,this article proposes a Computer Generated Architecture(CGA)parametric 3D modeling method based on CityEngine.Research on expanding and customizing modeling rules to create indoor and outdoor modeling rule templates for buildings and methods for generating urban 3D models have been carried out.The results have shown that the completed model can be displayed on different platforms thanks to parameterized modeling.The model can be modified easily and directly applied to the analysis and decision-making of urban planning schemes.展开更多
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize t...This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.展开更多
In freeform surface modelling, developable surfaces have much application value. But, in 3D space, there is not always a regular developable surface which interpolates the given boundary of an arbitrary piecewise smoo...In freeform surface modelling, developable surfaces have much application value. But, in 3D space, there is not always a regular developable surface which interpolates the given boundary of an arbitrary piecewise smooth closed curve. In this paper, tensor product Bézier surfaces interpolating the closed curves are determined and the resulting surface is a minimum of the functional defined by the L2-integral norm of the Gaussian curvature. The Gaussian curvature of the surfaces is minimized by the method of solving nonlinear optimization problems. An improved approach trust-region form method is proposed. A simple application example is also given.展开更多
In order to perform a high-quality interactive rendering of large medical data sets on a single off-the-shelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, ...In order to perform a high-quality interactive rendering of large medical data sets on a single off-the-shelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.展开更多
A direct texture synthesis method on arbitrary surfaces is proposed in thispaper. The idea is to recursively map triangles on surface to texture space until the surface iscompletely mapped. First, the surface is simpl...A direct texture synthesis method on arbitrary surfaces is proposed in thispaper. The idea is to recursively map triangles on surface to texture space until the surface iscompletely mapped. First, the surface is simplified and a tangential vector field is created overthe simplified mesh. Then, mapping process searches for the most optimal texture coordinates intexture sample for each triangle, and the textures of neighboring triangles are blended on the mesh.All synthesized texture triangles are compressed to an atlas. Finally, the simplified mesh issubdivided to approach the initial surface. The algorithm has several advantages over formermethods: it synthesizes texture on surface without local parameterization; it does not needpartitioning surface to patches; and it does not need a particular texture sample. The resultsdemonstrate that the new algorithm is applicable to a wide variety of texture samples and anytriangulated surfaces.展开更多
A novel texture mapping technique is proposed based on nonlinear dimension reduction, called Bernoulli logistic embedding (BLE). Our probabilistic embedding model builds texture mapping with minimal shearing effects...A novel texture mapping technique is proposed based on nonlinear dimension reduction, called Bernoulli logistic embedding (BLE). Our probabilistic embedding model builds texture mapping with minimal shearing effects. A log-likelihood function, related to the Bregman distance, is used to measure the similarity between two related matrices defined over the spaces before and after embedding. Low-dimensional embeddings can then be obtained through minimizing this function by a fast block relaxation algorithm. To achieve better quality of texture mapping, the embedded results are adopted as initial values for mapping enhancement by stretch-minimizing. Our method can be applied to both complex mesh surfaces and dense point clouds.展开更多
An extension to texture mapping is given in this paper for improving theefficiency of image-based rendering. For a depth image with an orthogonal displacement at eachpixel, it is decomposed by the displacement into a ...An extension to texture mapping is given in this paper for improving theefficiency of image-based rendering. For a depth image with an orthogonal displacement at eachpixel, it is decomposed by the displacement into a series of layered textures (LTs) with each onehaving the same displacement for all its texels. Meanwhile, some texels of the layered textures areinterpolated for obtaining a continuous 3D approximation of the model represented in the depthimage. Thus, the plane-to-plane texture mapping can be used to map these layered textures to producenovel views and the advantages can be obtained as follows: accelerating the rendering speed,supporting the 3D surface details and view motion parallax, and avoiding the expensive task ofhole-filling in the rendering stage. Experimental results show the new method can producehigh-quality images and run faster than many famous image-based rendering techniques.展开更多
Synthesis of transition textures is essential for displaying visually acceptable appearances on a terrain. This investigation presents a modified method for synthesizing the transition texture to be tiled on a terrain...Synthesis of transition textures is essential for displaying visually acceptable appearances on a terrain. This investigation presents a modified method for synthesizing the transition texture to be tiled on a terrain. All transition pattern types are recognized for a number of input textures. The proposed modified patch-based sampling texture synthesis approach, using the extra feature map of the input source and target textures for patch matching, can synthesize any transition texture on a succession pattern by initializing the output texture using a portion of the source texture enclosed in a transition cut. The transition boundary is further enhanced to improve the visual effect by tracing out the integral texture elements. Either the Game of Life model or Wang tiles method are exploited to present a good-looking profile of successions on a terrain for tiling transition textures. Experimental results indicate that the proposed method requires few input textures, yet synthesizes numerous tileable transition textures, which are useful for obtaining a vivid appearance of a terrain.展开更多
Digital Earth essentially consists of 3D and moreD models and attached semantic information(attributes).Techniques for generating such models efficiently are required very urgently.Reality-based 3D modelling using ima...Digital Earth essentially consists of 3D and moreD models and attached semantic information(attributes).Techniques for generating such models efficiently are required very urgently.Reality-based 3D modelling using images as prime data source plays an important role in this context.Images contain a wealth of information that can be advantageously used for model generation.Images are increasingly available from satellite,aerial and terrestrial platforms.This contribution briefly describes some of the problems which we encounter if the process of model generation is to be automatised.With the help of some examples from Digital Terrain Model generation,Cultural Heritage and 3D city modelling we show briefly what can be achieved.Special attention is directed towards the use of model helicopters for image data acquisition.Some problems with interactive visualisation are discussed.Also,issues surrounding R&D,professional practice and education are also addressed.展开更多
3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality (VR). The main issues of 3D facial model reconstruction based on images by vis...3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality (VR). The main issues of 3D facial model reconstruction based on images by vision technologies are in twofold: one is to select and match the corresponding features of face from two images with minimal interaction and the other is to generate the realistic-looking human face model. In this paper, a new algorithm for realistic-looking face reconstruction is presented based on stereo vision. Firstly, a pattern is printed and attached to a planar surface for camera calibration, and corners generation and corners matching between two images are performed by integrating modified image pyramid Lucas-Kanade (PLK) algorithm and local adjustment algorithm, and then 3D coordinates of corners are obtained by 3D reconstruction. Individual face model is generated by the deformation of general 3D model and interpolation of the features. Finally, realistic-looking human face model is obtained after texture mapping and eyes modeling. In addition, some application examples in the field of VR are given. Experimental result shows that the proposed algorithm is robust and the 3D model is photo-realistic.展开更多
An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field...An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field of view is proposed,including real-time video projection,multiple video texture fusion and 3D visualization of moving objects.A new diagonally weighted algorithm is proposed to smooth the apparent gaps within the overlapping area between the two adjacent videos.A visualization method for the location and trajectory of a moving virtual object is proposed to display the moving object and its trajectory in the 3D virtual environment.The experimental results showed that the proposed set of algorithms are able to fuse multiple real-time videos with 3D models efficiently,and the experiment runs a 3D scene containing two million triangles and six real-time videos at around 55 frames per second on a laptop with 1GB of graphics card memory.In addition,a realistic AVE with a wide field of view was created based on the Digital Earth Science Platform by fusing three videos with a complex indoor virtual scene,visualizing a moving object and drawing its trajectory in the real time.展开更多
In this paper, a new volume rendering method with boundary enhancement is presented. The boundary is extracted and represented by surfaces explicitly. Then, using 3D texture mapping and graphics acceleration hardware,...In this paper, a new volume rendering method with boundary enhancement is presented. The boundary is extracted and represented by surfaces explicitly. Then, using 3D texture mapping and graphics acceleration hardware, the volume data can be rendered with controllable boundary shading effect almost in real time. Test shows that this method is 4-5 times faster than the previous methods. Moreover, it can also be extended to render the surfaces and the volumetric data together interactively.展开更多
Knowledge of the spatial distribution of soil textural properties is important for determining soil moisture storage and soil hydraulic transport properties.Capturing field heterogeneity without exhaustive sampling an...Knowledge of the spatial distribution of soil textural properties is important for determining soil moisture storage and soil hydraulic transport properties.Capturing field heterogeneity without exhaustive sampling and costly sample analysis is difficult. Our objective was to employ electromagnetic induction(EMI) mapping in low apparent electrical conductivity(EC_a) soils at varying soil water contents to capture time invariant properties such as soil texture. Georeferenced EC_ameasurements were taken using a ground conductivity meter on six different days where volumetric water content(θ_v) varied from 0.11 to 0.23. The 50 m × 50 m field included a subsurface gravelly patch in an otherwise homogeneous silt-loam alluvial soil.Ordinary block kriging predicted EC_aat unsampled areas to produce 1-m resolution maps. Temporal stability analysis was used to divide the field into three distinct EC_a regions. Subsequent ground-truthing confirmed the lowest conductivity region correlated with coarse textured soil parent materials associated with a former high-energy alluvial depositional area. Combining maps using temporal stability analysis gives the clearest image of the textural difference. These maps could be informative for modeling,experimental design, sensor placement and targeted zone management strategies in soil science, ecology, hydrology,and agricultural applications.展开更多
The underwater acoustics is primary and most effective method for underwater object detection and the complex underwater acoustics battlefield environment can be visually described by the three-dimensional(3D)energy f...The underwater acoustics is primary and most effective method for underwater object detection and the complex underwater acoustics battlefield environment can be visually described by the three-dimensional(3D)energy field.Through solving the 3D propagation models,the traditional underwater acoustics volume data can be obtained,but it is large amount of calculation.In this paper,a novel modeling approach,which transforms two-dimensional(2D)wave equation into 2D space and optimizes energy loss propagation model,is proposed.In this way,the information for the obtained volume data will not be lost too much.At the same time,it can meet the requirements of data processing for the real-time visualization.In the process of volume rendering,3D texture mapping methods is used.The experimental results are evaluated on data size and frame rate,showing that our approach outperforms other approaches and the approach can achieve better results in real time and visual effects.展开更多
文摘An effective approach, mapping the texture for building model based on the digital photogrammetric theory, is proposed. The easily-acquired image sequences from digital video camera on helicopter are used as texture resource, and the correspondence between the space edge in building geometry model and its line feature in image sequences is determined semi-automatically. The experimental results in production of three-dimensional data for car navigation show us an attractive future both in efficiency and effect.
基金Supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-EXC 2023 Internet of Production/390621612。
文摘manufacturing(AM)technologies have been recognized for their capability to build complex components and hence have ofered more freedom to designers for a long time.The ability to directly use a computer-aided design(CAD)model has allowed for fabricating and realizing complicated components,monolithic design,reducing the number of components in an assembly,decreasing time to market,and adding performance or comfort-enhancing functionalities.One of the features that can be introduced for boosting a component functionality using AM is the inclusion of surface texture on a given component.This inclusion is usually a difcult task as creating a CAD model resolving fne details of a given texture is difcult even using commercial software packages.This paper develops a methodology to include texture directly on the CAD model of a target surface using a patch-based sampling texture synthesis algorithm,which can be manufactured using AM.Input for the texture generation algorithm can be either a physical sample or an image with heightmap information.The heightmap information from a physical sample can be obtained by 3D scanning the sample and using the information from the acquired point cloud.After obtaining the required inputs,the patches are sampled for texture generation according to non-parametric estimation of the local conditional Markov random feld(MRF)density function,which helps avoid mismatched features across the patch boundaries.While generating the texture,a design constraint to ensure AM producibility is considered,which is essential when manufacturing a component using,e.g.,Fused Deposition Melting(FDM)or Laser Powder Bed Fusion(LPBF).The generated texture is then mapped onto the surface using the developed distance and angle preserving mapping algorithms.The implemented algorithms can be used to map the generated texture onto a mathematically defned surface.This paper maps the textures onto fat,curved,and sinusoidal surfaces for illustration.After the texture mapping,a stereolithography(STL)model is generated with the desired texture on the target surface.The generated STL model is printed using FDM technology as a fnal step.
文摘Texture mapping is an important technique for high -quality image generation in computer graphics. In this paper, the shortcoming of the traditional texture mapping approaches is analysed and a general bidirectional texture mapping method is proposed. Based on the bidirectional mapping, an algorithm for mapping an image to an arbitrary polygon in 3D space is given.
文摘With the advancement of technology and the development of cities,urban planning and management methods are also constantly improving.From paper-based assignments to modern digitization,new technologies have enabled more efficient design and management for cities.3D modeling can used to simulate the urban environment,which can assist in urban planning and management.However,large-scale modeling cannot be achieved through existing modeling methods,and there are still some shortcomings in the maintenance of the model.Therefore,this article proposes a Computer Generated Architecture(CGA)parametric 3D modeling method based on CityEngine.Research on expanding and customizing modeling rules to create indoor and outdoor modeling rule templates for buildings and methods for generating urban 3D models have been carried out.The results have shown that the completed model can be displayed on different platforms thanks to parameterized modeling.The model can be modified easily and directly applied to the analysis and decision-making of urban planning schemes.
基金Postdoctoral Fund of China (No. 2003034518), Fund of Health Bureau of Zhejiang Province (No. 2004B042), China
文摘This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
文摘In freeform surface modelling, developable surfaces have much application value. But, in 3D space, there is not always a regular developable surface which interpolates the given boundary of an arbitrary piecewise smooth closed curve. In this paper, tensor product Bézier surfaces interpolating the closed curves are determined and the resulting surface is a minimum of the functional defined by the L2-integral norm of the Gaussian curvature. The Gaussian curvature of the surfaces is minimized by the method of solving nonlinear optimization problems. An improved approach trust-region form method is proposed. A simple application example is also given.
基金the Advanced Project Foundation between China and France(PRA SI03-02).
文摘In order to perform a high-quality interactive rendering of large medical data sets on a single off-the-shelf PC, a LOD selection algorithm for multi-resolution volume rendering using 3D texture mapping is presented, which uses an adaptive scheme that renders the volume in a region-of-interest at a high resolution and the volume away from this region at lower resolutions. The algorithm is based on several important criteria, and rendering is done adaptively by selecting high-resolution cells close to a center of attention and low-resolution cells away from this area. In addition, our hierarchical level-of-detail representation guarantees consistent interpolation between different resolution levels. Experiments have been applied to a number of large medical data and have produced high quality images at interactive frame rates using standard PC hardware.
文摘A direct texture synthesis method on arbitrary surfaces is proposed in thispaper. The idea is to recursively map triangles on surface to texture space until the surface iscompletely mapped. First, the surface is simplified and a tangential vector field is created overthe simplified mesh. Then, mapping process searches for the most optimal texture coordinates intexture sample for each triangle, and the textures of neighboring triangles are blended on the mesh.All synthesized texture triangles are compressed to an atlas. Finally, the simplified mesh issubdivided to approach the initial surface. The algorithm has several advantages over formermethods: it synthesizes texture on surface without local parameterization; it does not needpartitioning surface to patches; and it does not need a particular texture sample. The resultsdemonstrate that the new algorithm is applicable to a wide variety of texture samples and anytriangulated surfaces.
基金A preliminary version of this paper appeared in Proc. the 1st Korea-China Joint Conference on Geometric and Visual Computing. This work is supported in part by the National Basic Research 973 Program of China (Grant No.2002CB312102) and the National Natural Science Foundation of China (Grant Nos. 60021201, 60505001 and 60133020).
文摘A novel texture mapping technique is proposed based on nonlinear dimension reduction, called Bernoulli logistic embedding (BLE). Our probabilistic embedding model builds texture mapping with minimal shearing effects. A log-likelihood function, related to the Bregman distance, is used to measure the similarity between two related matrices defined over the spaces before and after embedding. Low-dimensional embeddings can then be obtained through minimizing this function by a fast block relaxation algorithm. To achieve better quality of texture mapping, the embedded results are adopted as initial values for mapping enhancement by stretch-minimizing. Our method can be applied to both complex mesh surfaces and dense point clouds.
文摘An extension to texture mapping is given in this paper for improving theefficiency of image-based rendering. For a depth image with an orthogonal displacement at eachpixel, it is decomposed by the displacement into a series of layered textures (LTs) with each onehaving the same displacement for all its texels. Meanwhile, some texels of the layered textures areinterpolated for obtaining a continuous 3D approximation of the model represented in the depthimage. Thus, the plane-to-plane texture mapping can be used to map these layered textures to producenovel views and the advantages can be obtained as follows: accelerating the rendering speed,supporting the 3D surface details and view motion parallax, and avoiding the expensive task ofhole-filling in the rendering stage. Experimental results show the new method can producehigh-quality images and run faster than many famous image-based rendering techniques.
文摘Synthesis of transition textures is essential for displaying visually acceptable appearances on a terrain. This investigation presents a modified method for synthesizing the transition texture to be tiled on a terrain. All transition pattern types are recognized for a number of input textures. The proposed modified patch-based sampling texture synthesis approach, using the extra feature map of the input source and target textures for patch matching, can synthesize any transition texture on a succession pattern by initializing the output texture using a portion of the source texture enclosed in a transition cut. The transition boundary is further enhanced to improve the visual effect by tracing out the integral texture elements. Either the Game of Life model or Wang tiles method are exploited to present a good-looking profile of successions on a terrain for tiling transition textures. Experimental results indicate that the proposed method requires few input textures, yet synthesizes numerous tileable transition textures, which are useful for obtaining a vivid appearance of a terrain.
文摘Digital Earth essentially consists of 3D and moreD models and attached semantic information(attributes).Techniques for generating such models efficiently are required very urgently.Reality-based 3D modelling using images as prime data source plays an important role in this context.Images contain a wealth of information that can be advantageously used for model generation.Images are increasingly available from satellite,aerial and terrestrial platforms.This contribution briefly describes some of the problems which we encounter if the process of model generation is to be automatised.With the help of some examples from Digital Terrain Model generation,Cultural Heritage and 3D city modelling we show briefly what can be achieved.Special attention is directed towards the use of model helicopters for image data acquisition.Some problems with interactive visualisation are discussed.Also,issues surrounding R&D,professional practice and education are also addressed.
文摘3D human face model reconstruction is essential to the generation of facial animations that is widely used in the field of virtual reality (VR). The main issues of 3D facial model reconstruction based on images by vision technologies are in twofold: one is to select and match the corresponding features of face from two images with minimal interaction and the other is to generate the realistic-looking human face model. In this paper, a new algorithm for realistic-looking face reconstruction is presented based on stereo vision. Firstly, a pattern is printed and attached to a planar surface for camera calibration, and corners generation and corners matching between two images are performed by integrating modified image pyramid Lucas-Kanade (PLK) algorithm and local adjustment algorithm, and then 3D coordinates of corners are obtained by 3D reconstruction. Individual face model is generated by the deformation of general 3D model and interpolation of the features. Finally, realistic-looking human face model is obtained after texture mapping and eyes modeling. In addition, some application examples in the field of VR are given. Experimental result shows that the proposed algorithm is robust and the 3D model is photo-realistic.
基金Research presented in this paper was funded by the National Key Research and Development Program of China[grant numbers 2016YFB0501503 and 2016YFB0501502]Hainan Provincial Department of Science and Technology[grant number ZDKJ2016021].
文摘An Augmented virtual environment(AVE)is concerned with the fusion of real-time video with 3D models or scenes so as to augment the virtual environment.In this paper,a new approach to establish an AVE with a wide field of view is proposed,including real-time video projection,multiple video texture fusion and 3D visualization of moving objects.A new diagonally weighted algorithm is proposed to smooth the apparent gaps within the overlapping area between the two adjacent videos.A visualization method for the location and trajectory of a moving virtual object is proposed to display the moving object and its trajectory in the 3D virtual environment.The experimental results showed that the proposed set of algorithms are able to fuse multiple real-time videos with 3D models efficiently,and the experiment runs a 3D scene containing two million triangles and six real-time videos at around 55 frames per second on a laptop with 1GB of graphics card memory.In addition,a realistic AVE with a wide field of view was created based on the Digital Earth Science Platform by fusing three videos with a complex indoor virtual scene,visualizing a moving object and drawing its trajectory in the real time.
文摘In this paper, a new volume rendering method with boundary enhancement is presented. The boundary is extracted and represented by surfaces explicitly. Then, using 3D texture mapping and graphics acceleration hardware, the volume data can be rendered with controllable boundary shading effect almost in real time. Test shows that this method is 4-5 times faster than the previous methods. Moreover, it can also be extended to render the surfaces and the volumetric data together interactively.
基金supported by an INRA SSGP Doctoral Fellowship from the Inland North-west Research Alliance (INRA)by the Utah Agricultural Experiment Station, Utah State University, Logan, Utah, approved as journal paper 8952
文摘Knowledge of the spatial distribution of soil textural properties is important for determining soil moisture storage and soil hydraulic transport properties.Capturing field heterogeneity without exhaustive sampling and costly sample analysis is difficult. Our objective was to employ electromagnetic induction(EMI) mapping in low apparent electrical conductivity(EC_a) soils at varying soil water contents to capture time invariant properties such as soil texture. Georeferenced EC_ameasurements were taken using a ground conductivity meter on six different days where volumetric water content(θ_v) varied from 0.11 to 0.23. The 50 m × 50 m field included a subsurface gravelly patch in an otherwise homogeneous silt-loam alluvial soil.Ordinary block kriging predicted EC_aat unsampled areas to produce 1-m resolution maps. Temporal stability analysis was used to divide the field into three distinct EC_a regions. Subsequent ground-truthing confirmed the lowest conductivity region correlated with coarse textured soil parent materials associated with a former high-energy alluvial depositional area. Combining maps using temporal stability analysis gives the clearest image of the textural difference. These maps could be informative for modeling,experimental design, sensor placement and targeted zone management strategies in soil science, ecology, hydrology,and agricultural applications.
基金supported by the National Natural Science Foundation of China(61503124 and 61304144)the Opening Project of Key Laboratory of Mine Informatization,Henan Polytechnic University(KY2015-06)the Key Scientific Research Projects of Henan Higher,China(15A520018).
文摘The underwater acoustics is primary and most effective method for underwater object detection and the complex underwater acoustics battlefield environment can be visually described by the three-dimensional(3D)energy field.Through solving the 3D propagation models,the traditional underwater acoustics volume data can be obtained,but it is large amount of calculation.In this paper,a novel modeling approach,which transforms two-dimensional(2D)wave equation into 2D space and optimizes energy loss propagation model,is proposed.In this way,the information for the obtained volume data will not be lost too much.At the same time,it can meet the requirements of data processing for the real-time visualization.In the process of volume rendering,3D texture mapping methods is used.The experimental results are evaluated on data size and frame rate,showing that our approach outperforms other approaches and the approach can achieve better results in real time and visual effects.