Based on the waveform data observed by the regional seismic network of Gansu Province,we calculated the apparent stress of 422 earthquakes with M_L≥ 2. 0 occurring in the surrounding area of the Minxian earthquake fr...Based on the waveform data observed by the regional seismic network of Gansu Province,we calculated the apparent stress of 422 earthquakes with M_L≥ 2. 0 occurring in the surrounding area of the Minxian earthquake from January 2010 to July 2014 and obtained the temporal and spatial variation of apparent stress before and after the Minxian earthquake. Results show that( 1) the high value of apparent stress of earthquakes with M_L≥4. 0 was concentrated in the epicenter area before the Minxian earthquake while that of earthquakes with M_L< 4. 0 was not;( 2) Apparent stress around the epicenter area showed an obvious increasing process before the Minxian earthquake and the increasing process has continued after the main shock,which means that this study area is still in the danger of strong earthquakes.展开更多
It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip ...It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of slip roughness; therefore, we suggest that, for realistic ground- motion simulations due to future earthquake, it is imperative to properly estimate the slip roughness distribution.展开更多
基金sponsored by the regular project of earthquake monitoring and prediction in 2016(16C23ZX327)
文摘Based on the waveform data observed by the regional seismic network of Gansu Province,we calculated the apparent stress of 422 earthquakes with M_L≥ 2. 0 occurring in the surrounding area of the Minxian earthquake from January 2010 to July 2014 and obtained the temporal and spatial variation of apparent stress before and after the Minxian earthquake. Results show that( 1) the high value of apparent stress of earthquakes with M_L≥4. 0 was concentrated in the epicenter area before the Minxian earthquake while that of earthquakes with M_L< 4. 0 was not;( 2) Apparent stress around the epicenter area showed an obvious increasing process before the Minxian earthquake and the increasing process has continued after the main shock,which means that this study area is still in the danger of strong earthquakes.
基金supported by the CAS/SAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-19)
文摘It is well known that quantitative estimation of slip distributions on fault plane is one of the most important issues for earthquake source inversion related to the fault rupture process. The characteristics of slip distribution on the main fault play a fundamental role to control strong ground motion pattern. A large amount of works have also suggested that variable slip models inverted from longer period ground motion recordings are relevant for the prediction of higher frequency ground motions. Zhang et al. (Chin J Geophys 56:1412-1417, 2013) and Wang et al. (Chin J Geophys 56:1408-1411,2013) published their source inversions for the fault rupturing process soon after the April 20, 2013 Lushan earthquake in Sichuan, China. In this study, first, we synthesize two forward source slip models: the value of maximum slip, fault dimension, size, and dimension of major asperities, and comer wave number obtained from Wang's model is adopted to constrain the gen- eration of k-2 model and crack model. Next, both inverted and synthetic slip models are employed to simulate the ground motions for the Lushan earthquake based on the stochastic finite-fault method. In addition, for a comparison purpose, a stochastic slip model and another k-2 model (k 2 model II) with 2 times value of comer wave number of the original k-2 model (k 2 model I) are also employed for simulation for Lushan event. The simulated results characterized by Modified Mer- calli Intensity (MMI) show that the source slip models based on the inverted and synthetic slip distributions could capture many basic features associated with the ground motion patterns. Moreover, the simulated MMI distributions reflect the rupture directivity effect and the influence of the shallow velocity structure well. On the other hand, the simulated MMI bystochastic slip model and k 2 model II is apparently higher than observed intensity. By contrast, our simulation results show that the higher frequency ground motion is sensitive to the degree of slip roughness; therefore, we suggest that, for realistic ground- motion simulations due to future earthquake, it is imperative to properly estimate the slip roughness distribution.