Abstract Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam tur- bine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal d...Abstract Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam tur- bine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-aver- aged N-S equations and standard k-e turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30~ to 40~, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effectiveenthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.展开更多
Edge detection is a commonly requested task in the interpretation of potential field data. Different methods have different results for varied depths and shapes of geological bodies. In this paper,we propose using the...Edge detection is a commonly requested task in the interpretation of potential field data. Different methods have different results for varied depths and shapes of geological bodies. In this paper,we propose using the combination of structure tensor and tilt angle to detect the edges of the sources,which can display the edges of shallow and deep bodies simultaneously. Through tests on synthetic potential field data,it is obvious that the proposed edge detection methods can display the sources edges more clearly and precisely,compared with other commonly used methods. The application on real potential field data shows similar result,obtaining the edges of layers and faults clearly. In addition,another advantage of the new method is its insensitivity to noise.展开更多
Seven adjustments of convergent-type Vortex Tube (VT) with different throttle angles were applied. The adjustments were made to analyze the influences of such angles on cold and hot temperature drops as well as flow...Seven adjustments of convergent-type Vortex Tube (VT) with different throttle angles were applied. The adjustments were made to analyze the influences of such angles on cold and hot temperature drops as well as flow structures inside the VTs. An experimental setup was designed, and tests were performed on different convergent VT configurations at injection pressures ranging from 0.45 to 0.65 MPa. The angles of the throttle valve were arranged between 30° to 90°, and the numbers of injection nozzles ranged between 2 and 6. Laboratory results indicated that the maximum hot and cold temperature drops ranged from 23.24 to 35 K and from 22.87 to 32.88 K, respectively, at four injection nozzles. Results also showed that temperature drop is a function of hot throttle valve angle with the maximum hot and cold temperature drops depending on the angle applied. We used graphs to demonstrate the changes in the cold and hot temperature drops with respect to hot throttle angle values. These values were interpreted and evaluated to determine the optimum angle, which was 60°. The CFD outputs agreed very well with the laboratory results. The proposed CFD results can help future researchers gain good insights into the complicated separation process taking place inside the VTs.展开更多
In this paper a simulation to maximize the global solar radiation on a sloped collecting surface was applied to typical latitudes in the area of southern Italy, to calculate the optimum tilt angle of solar panels on b...In this paper a simulation to maximize the global solar radiation on a sloped collecting surface was applied to typical latitudes in the area of southern Italy, to calculate the optimum tilt angle of solar panels on building structures or large photovoltaic power plants located in that geographical area. Indeed, the area of southern Italy and in particular Sicily and Calabria are the top of European locations for acquiring solar energy. Some models of diffuse solar irradiance were taken into account to determine panels inclinations that maximized the impinging solar radiation by means of global horizontal solar radiation data provided from the Italian Institute of ENEA (Italy). An algorithm was used for the simulation providing a set of tilt angles for each latitude. The optimum tilt angle values obtained from the simulation resulted to be strictly related to the model of diffuse solar radiation that was used. Indeed, the disagreement between the values obtained using anisotropic models of diffuse solar radiation and those obtained from the isotropic model resulted to decrease significantly with increasing solar declination, showing that the isotropic model can be reliable only in summer months.展开更多
The tilt angle of the small scale existing solar power plants is 60 degree and it is 45 degree for the megawatts(MW)class solar power plant in Mongolia.However,the PV module which is installed with 45 degree accumulat...The tilt angle of the small scale existing solar power plants is 60 degree and it is 45 degree for the megawatts(MW)class solar power plant in Mongolia.However,the PV module which is installed with 45 degree accumulates lots of snow during the winter.Currently,all solar PV systems installed in Mongolia are fixed the direction and tilt angles.According to the previous research result,the tilt angle of those systems was not suitable for using especially in the winter.The PV module which is installed with 60 degree does not accumulates snow even during the autumn and spring.According to the National Aeronautics and Space Administration(NASA)solar radiation database,solar irradiance for equator facing is largest at 32-degree tilted angle during the summer,47-degree during the spring and autumn,at 62-degree during the winter.The results of this paper show,the tilt angle of the PV module should be adjusted at least twice a year.For instance,the tilt angle will be adjusted at the 32-degree from 15th March to 24th August,at the 62-degree from 25th August to 15th March.In this case,the annual total energy output will be increased up to 30%than present production.展开更多
Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies...Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data.展开更多
Optimizing the output power of a photovoltaic panel improves the efficiency of a solar driven energy system. The maximum output power of a photovoltaic panel depends on atmospheric conditions, such as (direct solar ra...Optimizing the output power of a photovoltaic panel improves the efficiency of a solar driven energy system. The maximum output power of a photovoltaic panel depends on atmospheric conditions, such as (direct solar radiation, air pollution and cloud movements), load profile and the tilt and orientation angles. This paper describes an experimental analysis of maximizing output power of a photovoltaic panel, based on the use of existing equations of tilt angles derived from mathematical models and simulation packages. Power regulation is achieved by the use of a DC-DC converter, a fixed load resistance and a single photovoltaic panel. A data logger is used to make repeated measurements which ensure reliability of the results. The results of the paper were taken over a four month period from April through July. The photovoltaic panel was set to an orientation angle of 0? with tilt angles of 16?, 26? and 36?. Preliminary results indicate that tilt angles between 26? and 36? provide optimum photovoltaic output power for winter months in South Africa.展开更多
A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transf...A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.展开更多
The leaning of structures happens all around the world and generates impacts on different extents;thus, it is important to learn about the causes behind. In this report, the sequential construction of a typical leanin...The leaning of structures happens all around the world and generates impacts on different extents;thus, it is important to learn about the causes behind. In this report, the sequential construction of a typical leaning structure, the Tower of Pisa, is discussed and simulated by using a finite element code, PLAXIS. The simulation is performed on a two-dimensional plane with simplifications taken into consideration in making modeling feasible under limitations. Three distinct models are built with one as a control variable, while the other two models are set up with exact eccentricity. Data are obtained from the analysis and are plotted in a graph to clearly show the relationship between the tilting angle and construction phases. With reasonable and completed simulation, the study is able to show the significant role compressible subsoil plays in impacting the tilting performance of a tall building.展开更多
The Hercynian massif of the central Jebilet (Morocco) is characterized by the outcrop of many gossans with great economic importance. This work focuses on interpreting gravity data of Benslimane gossan, located about ...The Hercynian massif of the central Jebilet (Morocco) is characterized by the outcrop of many gossans with great economic importance. This work focuses on interpreting gravity data of Benslimane gossan, located about thirty kilometres to the North-West of Marrakech. The residual gravity map of the study area highlights several anomalies which coincide with the mining and geological contexts. Applying edge detection methods, for example, tilt angle derivative (TDR), the total horizontal derivative of the tilt angle derivative (HDR_TDR) and the 3D Euler deconvolution, allowed us to estimate the depth of the Benslimane deposit. As a result, the average depth of the ore deposit was estimated to exceed 200 m. The results are promising, and the processing methods must be applied to the other gossan in the Jebilet massif for further exploration studies.展开更多
This paper developed a theoretical model substantially based on the principle that only the normal component of solar radiation is actually converted into electrical energy. This theoretical model helped to predict mi...This paper developed a theoretical model substantially based on the principle that only the normal component of solar radiation is actually converted into electrical energy. This theoretical model helped to predict minimum and maximum daily energy gain (compared to static PV system tilted with certain angle) when using dual axis PV solar tracking systems, at any given location on earth without prior experimental data. Based on equations derived from model, minimum and maximum energy gain </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> computed and summarized in tables of minimum and maximum. Furthermore</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the model equations could be used to set up future experimental studies related to the matter.展开更多
The area covered by this study is the county of Kakobola and its surroundings. Previous studies show that those related to the study of depths by the gravity method, using other techniques, are not always carried out ...The area covered by this study is the county of Kakobola and its surroundings. Previous studies show that those related to the study of depths by the gravity method, using other techniques, are not always carried out until now. The main goal of this article is the gravimetric characterization of our area by other approach. The interest is not only to map the lineaments and to know their dip, but also to estimate the depths of these different anomalies. The methods used for this study are the first total horizontal derivative (FTHDT), tilt angle (TA), analytical signal (AS) and horizontal gradient magnitude (HGM). The processing of the complete Bouguer anomalies (CBA) data was done mainly through software. Data analysis using the semi-finished body depth method shows depths ranging from 7.49 m to 224.6 m. Data analysis using the AS method shows values ranging from 41.7 mGal/m to 510 mGal/m. The fractures and/or geological contacts in our study area show dips ranging from -73.73° to 68.16° and North-South orientation according to the tilt angle method. The FTHDT shows several lineaments, a NE oriented fracture of Kakobola and low dip values which suggest a tabular structure of the subsurface in our study area. According to the HGM, the study area shows several preferential directions of fractures and/or geological contacts whose the most frequent directions are the NNE-SSW and WNW.展开更多
In this article, research was conducted to improve Linter machines that remove short fibers remaining in ginned cotton seeds at cotton ginneries. The study examined the effect of changing the dimensions of the brush d...In this article, research was conducted to improve Linter machines that remove short fibers remaining in ginned cotton seeds at cotton ginneries. The study examined the effect of changing the dimensions of the brush drum, guide and mesh surface in the cleaning device proposed for the linting machine on the movement of the peg and the cleaning efficiency, and the highest level of efficiency in separating impurities from the peg was determined. During the study, the main factors influencing the effective operation of the improved linting machine were identified, the limits of their values were determined, and studies were carried out using the mathematical modeling method. As a result, at the values of the given coefficients, efficient operation of the improved linting machine was observed, that is, the lint cleaning efficiency reached 55.1%.展开更多
The titl angle measurement system based on the ADXL345 of three-axis acceleration sensor is introduced, and the composition and working principle of the system are described. The MSP430F149 microcontroller of ultra-lo...The titl angle measurement system based on the ADXL345 of three-axis acceleration sensor is introduced, and the composition and working principle of the system are described. The MSP430F149 microcontroller of ultra-low power and high performance is adopted. Firstly, the voltage value which is proportional to the acceleration value is output by ADXL345 when the system is powered. Secondly, the voltage value is converted into the corresponding digital signal by AD converter of the sensor. Thirdly, the digital signal is transformed into the titl angle according to the arithmetic processing of the MSP430F149. Finally, the corresponding angle is displayed on the liquid crystal display (LCD) screen. Experimental results show that the design has high sensitivity and response speed compared with the conventional methods. It is suitable for practical engineering application because of simple structure, low cost and low power consumption.展开更多
Friction stir welding(FSW)has been extensively adopted to fabricate aluminium alloy joints by incorporating various welding parameters that include welding speed,rotational speed,diameters of shoulder and pin and tool...Friction stir welding(FSW)has been extensively adopted to fabricate aluminium alloy joints by incorporating various welding parameters that include welding speed,rotational speed,diameters of shoulder and pin and tool tilt angle.FSW parameters significantly affect the weld strength.Tool tilt angle is one of the significant process parameters among the weld parameters.The present study focused on the effect of tool tilt angle on strength of friction stir lap welding of AA2014-T6 aluminium alloy.The tool tilt angle was varied between 0°and 4°with an equal increment of 1°.Other process parameters were kept constant.Macrostructure and microstructure analysis,microhardness measurement,scanning electron micrograph,transmission electron micrograph and energy dispersive spectroscopy analysis were performed to evaluate the lap shear strength of friction stir lap welded joint.Results proved that,defect-free weld joint was obtained while using a tool tilt angle of 1°to 3°.However,sound joints were welded using a tool tilt angle of 2°,which had the maximum lap shear strength of 14.42 kN and microhardness of HV 132.The joints welded using tool tilt angles of 1°and 3°yielded inferior lap shear strength due to unbalanced material flow in the weld region during FSW.展开更多
To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of...To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of various meteorological parameters namely the monthly averaged value of maximum temperature, minimum temperature, humidity and sunshine hours were used in this study. Assessment of the solar resources for the solar based renewable energy technologies of Bangladesh may be based upon this kind of measured data analyzed study. This study tried to estimate the monthly averaged solar radiation by presenting data in table and graph and finally analyze through equations and descriptions. Correlation between the measurements of monthly averaged solar radiation and the meteorological parameters was given for the selected 10 stations in Bangladesh. In conclusion, we tried to make a comparison among solar radiation on horizontal surface, fixed 20.83<sup> ° </sup> (degree) optimal tilt angle and variable optimal tilt surface at Dhaka station.展开更多
Aeromagnetic data for center-east Cameroon between the latitudes 3.5° to 4.5°N and longitudes 12° to 12.5°E are used to further study the subsurface area of this part of the geological Province of ...Aeromagnetic data for center-east Cameroon between the latitudes 3.5° to 4.5°N and longitudes 12° to 12.5°E are used to further study the subsurface area of this part of the geological Province of Central Africa and the Congo Craton. The GIS and GEOSOFT v6.5 softwares are used to treat the data. This analysis enabled us to explore our study area from surface right to the base. The Tilt Angle method is used to delineate geological structures and to estimate the depth. The Euler’s deconvolution method is used to estimate the specific depth of structural contacts. We estimate the northern boundary of the Congo Craton and southern boundary of the Pan-African starting from 3°7'N of West to 3°75'N of East. Its depth is estimated around 2.6 km for deep and 0.1 km for shallow while the direction is WSW-ENE and the NW slope varies from 30° to 60°. We obtain that main and minor lineaments exist throughout, from the surface to the base of the area with their principal direction being SW-NE. We also obtain the vertical gradient contact and the quasihorizontal contact. This is proof of the subduction of the Pan-African belt under the Congo Craton due to the intense collision which caused the rejuvenation of the crust. The main consequence of this collision is the formation of pudding and fold structures, beginning from the superficial part right to the base and which caused the intrusion of schistose, chlorite-schist, quartzite in the micaschist and the intrusions of gneiss and garnetiferous schist in the migmatite. In our study, we highlight the presence of 37 major and 523 minor lineaments that localize the circulation of minerals. The probable slope of the lineaments in the northern part of the region varies from 30° to 60° in a SE direction while in the southern part, and it varies from 30° to 60° in a NW direction.展开更多
A design of a slot bushing with a volumetric field has been developed, which allows to produce continuous fibers from melts with difficult processing characteristics in order to produce fibers with better operating ch...A design of a slot bushing with a volumetric field has been developed, which allows to produce continuous fibers from melts with difficult processing characteristics in order to produce fibers with better operating characteristics. The operability of the design was confirmed when solving two problems of special technological complexity. 1. 400 and 800 orifice bushings for production of continuous fibers from the basalt melt have been developed and recommended for manufacture. 2. The process of production of continuous fibers from standard glass using 2400 orifice bushing with perforated plates instead of orifice tips without air cooling, has been realized for the first time.展开更多
Solar collectors can provide clean, renewable, and domestic energy. The tilt angle and horizontal direction of solar collectors significantly affect its efficiency. There are many good methods to search the optimum ti...Solar collectors can provide clean, renewable, and domestic energy. The tilt angle and horizontal direction of solar collectors significantly affect its efficiency. There are many good methods to search the optimum tilt angle and horizontal direction to realize the maximum total radiation on the solar collector within a particular day or a specific period. However, it is hard to realize it when solar collectors are placed under obstacle’s shadows;especially when some obstacles, such as trees, have irregular shapes. This paper presents algorithms to achieve the best tilt angle and horizontal direction for solar collector’s performance under the free-form surfaces 3D obstacle’s shadow. The solution process is composed of 4 steps. First, it creates a 3D scene, in which a unique color is given to the solar collector. Second, it employs orthographic projection from the point of view to get an image of the scene. Third, the number of pixels is used to represent the efficiency of the solar collector by counting the pixels of the unique color. Fourth, the efficiency of solar collector in each direction in a period of time is calculated with many images to further select the best direction.展开更多
The DJADOM-ETA area is in south-eastern of Cameroon, within the Congo Craton (CC) formations and composed of gneiss and amphibolite, migmatites and intrusive rocks. Few geophysical studies have been carried out over s...The DJADOM-ETA area is in south-eastern of Cameroon, within the Congo Craton (CC) formations and composed of gneiss and amphibolite, migmatites and intrusive rocks. Few geophysical studies have been carried out over surrounding areas, but no investigation on the study area. The existence of aeromagnetic data covering the study area has motivated the application of a multiscale approach for tectonic features identification. The aim of this work is to interpret Aeromagnetic Data for Geological and Structural Mappings in the southeastern Cameroon. The GIS and GEOSOFT v8.4 softwares are used to treat data of Compagnie Minière du Cameroun getting in February 2012. The Tilt Angle method is used to delineate geological structures and to estimate the depth. The Euler’s Deconvolution method is used to estimate the specific depth of structural contacts. The presence of bifurcations, accompanied by virgations, leading to the occurrence of several faults. Principal lineaments are determined with the main direction being ESE-WNW and E-W for the minor lineaments. The study highlights two major faults: ESE-WNW and ENE-WSW, where the former dominates, what could be called the geological accident of ETA. The Euler’s Correlation and Tilt derivative contact map shows that most of the faults are vertical contacts. The geometrical description of this structure suggests an open synclinal transposed on vertical foliations: the major fault at the DJADOM axis is quasi-parallel to the Northern limit of the CC and parallel to the Sanaga Fault (SF) and the Central Cameroon Shear Zone (CCSZ). The features show a base strongly affected by tectonic which characterizes the transition between the zone from the CC and the belt from folds of the Pan-African. Also, the presence of the network characterizes the subsurface undulation in this study area: the intrusion of sandstone ochre quartz and schist of the Bek complex, the dolerite of the doleritic complex, and the silver micaschiste and ore quartzite in the base complex. On the TMI anomalies map, several places show high susceptibility contrasts, which is an indication of strong magnetization. Geological indicators point to inferred magnetite, dolerite and ochre schist quartzite which have a strong magnetization in this zone. The presence of weakly magnetized anomalies would be due to the migmatites of the base complex series. This study improved the knowledge of the subsurface structure of this area. It highlighted two major and minor faults. TMI anomalies map, in several places shows high susceptibility contrasts, which is an indication of strong magnetization.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.51576036,51476192)Science and Technology Development Planning Foundation of Jilin Province of China(Grant No.20140204040SF)
文摘Abstract Heat transfer and vacuum in condenser are influenced by the aerodynamic performance of steam tur- bine exhaust hood. The current research on exhaust hood is mainly focused on analyzing flow loss and optimal design of its structure without consideration of the wet steam condensing flow and the exhaust hood coupled with the front and rear parts. To better understand the aerodynamic performance influenced by the tilt angle of flow guide inside a diffuser, taking a 600 MW steam turbine as an example, a numerical simulator CFX is adopted to solve compressible three-dimensional (3D) Reynolds time-aver- aged N-S equations and standard k-e turbulence model. And the exhaust hood flow field influenced by different tilt angles of flow guide is investigated with consideration of the wet steam condensing flow and the exhaust hood coupled with the last stage blades and the condenser throat. The result shows that the total pressure loss coefficient and the static pressure recovery coefficient of exhaust hood change regularly and monotonously with the gradual increase of tilt angle of flow guide. When the tilt angle of flow guide is within the range of 30~ to 40~, the static pressure recovery coefficient is in the range of 15.27% to 17.03% and the total pressure loss coefficient drops to approximately 51%, the aerodynamic performance of exhaust hood is significantly improved. And the effectiveenthalpy drop in steam turbine increases by 0.228% to 0.274%. It is feasible to obtain a reasonable title angle of flow guide by the method of coupling the last stage and the condenser throat to exhaust hood in combination of the wet steam model, which provides a practical guidance to flow guide transformation and optimal design in exhaust hood.
基金Supported by projects of National Key Research and Development Plan(Nos.2017YFC0601606,2017YFC0602203)National Science and Technology Major Project(No.2016ZX05027-002-03)+1 种基金National Natural Science Foundation of China(Nos.41604098,41404089)State Key Program of National Natural Science of China(No.41430322)
文摘Edge detection is a commonly requested task in the interpretation of potential field data. Different methods have different results for varied depths and shapes of geological bodies. In this paper,we propose using the combination of structure tensor and tilt angle to detect the edges of the sources,which can display the edges of shallow and deep bodies simultaneously. Through tests on synthetic potential field data,it is obvious that the proposed edge detection methods can display the sources edges more clearly and precisely,compared with other commonly used methods. The application on real potential field data shows similar result,obtaining the edges of layers and faults clearly. In addition,another advantage of the new method is its insensitivity to noise.
文摘Seven adjustments of convergent-type Vortex Tube (VT) with different throttle angles were applied. The adjustments were made to analyze the influences of such angles on cold and hot temperature drops as well as flow structures inside the VTs. An experimental setup was designed, and tests were performed on different convergent VT configurations at injection pressures ranging from 0.45 to 0.65 MPa. The angles of the throttle valve were arranged between 30° to 90°, and the numbers of injection nozzles ranged between 2 and 6. Laboratory results indicated that the maximum hot and cold temperature drops ranged from 23.24 to 35 K and from 22.87 to 32.88 K, respectively, at four injection nozzles. Results also showed that temperature drop is a function of hot throttle valve angle with the maximum hot and cold temperature drops depending on the angle applied. We used graphs to demonstrate the changes in the cold and hot temperature drops with respect to hot throttle angle values. These values were interpreted and evaluated to determine the optimum angle, which was 60°. The CFD outputs agreed very well with the laboratory results. The proposed CFD results can help future researchers gain good insights into the complicated separation process taking place inside the VTs.
文摘In this paper a simulation to maximize the global solar radiation on a sloped collecting surface was applied to typical latitudes in the area of southern Italy, to calculate the optimum tilt angle of solar panels on building structures or large photovoltaic power plants located in that geographical area. Indeed, the area of southern Italy and in particular Sicily and Calabria are the top of European locations for acquiring solar energy. Some models of diffuse solar irradiance were taken into account to determine panels inclinations that maximized the impinging solar radiation by means of global horizontal solar radiation data provided from the Italian Institute of ENEA (Italy). An algorithm was used for the simulation providing a set of tilt angles for each latitude. The optimum tilt angle values obtained from the simulation resulted to be strictly related to the model of diffuse solar radiation that was used. Indeed, the disagreement between the values obtained using anisotropic models of diffuse solar radiation and those obtained from the isotropic model resulted to decrease significantly with increasing solar declination, showing that the isotropic model can be reliable only in summer months.
文摘The tilt angle of the small scale existing solar power plants is 60 degree and it is 45 degree for the megawatts(MW)class solar power plant in Mongolia.However,the PV module which is installed with 45 degree accumulates lots of snow during the winter.Currently,all solar PV systems installed in Mongolia are fixed the direction and tilt angles.According to the previous research result,the tilt angle of those systems was not suitable for using especially in the winter.The PV module which is installed with 60 degree does not accumulates snow even during the autumn and spring.According to the National Aeronautics and Space Administration(NASA)solar radiation database,solar irradiance for equator facing is largest at 32-degree tilted angle during the summer,47-degree during the spring and autumn,at 62-degree during the winter.The results of this paper show,the tilt angle of the PV module should be adjusted at least twice a year.For instance,the tilt angle will be adjusted at the 32-degree from 15th March to 24th August,at the 62-degree from 25th August to 15th March.In this case,the annual total energy output will be increased up to 30%than present production.
基金supported by the China Postdoctoral Science Foundation (No.2014M551188)the Deep Exploration in China Sinoprobe-09-01 (No.201011078)
文摘Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data.
文摘Optimizing the output power of a photovoltaic panel improves the efficiency of a solar driven energy system. The maximum output power of a photovoltaic panel depends on atmospheric conditions, such as (direct solar radiation, air pollution and cloud movements), load profile and the tilt and orientation angles. This paper describes an experimental analysis of maximizing output power of a photovoltaic panel, based on the use of existing equations of tilt angles derived from mathematical models and simulation packages. Power regulation is achieved by the use of a DC-DC converter, a fixed load resistance and a single photovoltaic panel. A data logger is used to make repeated measurements which ensure reliability of the results. The results of the paper were taken over a four month period from April through July. The photovoltaic panel was set to an orientation angle of 0? with tilt angles of 16?, 26? and 36?. Preliminary results indicate that tilt angles between 26? and 36? provide optimum photovoltaic output power for winter months in South Africa.
基金Supported by the Key Laboratory of Microsatellites,Chinese Academy of Sciences
文摘A heavy-ion irradiation experiment is studied in digital storage cells with different design approaches in 130?nm CMOS bulk Si and silicon-on-insulator (SOI) technologies. The effectiveness of linear energy transfer (LET) with a tilted ion beam at the 130?nm technology node is obtained. Tests of tilted angles θ=0 ° , 30 ° and 60 ° with respect to the normal direction are performed under heavy-ion Kr with certain power whose LET is about 40?MeVcm 2 /mg at normal incidence. Error numbers in D flip-flop chains are used to determine their upset sensitivity at different incidence angles. It is indicated that the effective LETs for SOI and bulk Si are not exactly in inverse proportion to cosθ , furthermore the effective LET for SOI is more closely in inverse proportion to cosθ compared to bulk Si, which are also the well known behavior. It is interesting that, if we design the sample in the dual interlocked storage cell approach, the effective LET in bulk Si will look like inversely proportional to cosθ very well, which is also specifically explained.
文摘The leaning of structures happens all around the world and generates impacts on different extents;thus, it is important to learn about the causes behind. In this report, the sequential construction of a typical leaning structure, the Tower of Pisa, is discussed and simulated by using a finite element code, PLAXIS. The simulation is performed on a two-dimensional plane with simplifications taken into consideration in making modeling feasible under limitations. Three distinct models are built with one as a control variable, while the other two models are set up with exact eccentricity. Data are obtained from the analysis and are plotted in a graph to clearly show the relationship between the tilting angle and construction phases. With reasonable and completed simulation, the study is able to show the significant role compressible subsoil plays in impacting the tilting performance of a tall building.
文摘The Hercynian massif of the central Jebilet (Morocco) is characterized by the outcrop of many gossans with great economic importance. This work focuses on interpreting gravity data of Benslimane gossan, located about thirty kilometres to the North-West of Marrakech. The residual gravity map of the study area highlights several anomalies which coincide with the mining and geological contexts. Applying edge detection methods, for example, tilt angle derivative (TDR), the total horizontal derivative of the tilt angle derivative (HDR_TDR) and the 3D Euler deconvolution, allowed us to estimate the depth of the Benslimane deposit. As a result, the average depth of the ore deposit was estimated to exceed 200 m. The results are promising, and the processing methods must be applied to the other gossan in the Jebilet massif for further exploration studies.
文摘This paper developed a theoretical model substantially based on the principle that only the normal component of solar radiation is actually converted into electrical energy. This theoretical model helped to predict minimum and maximum daily energy gain (compared to static PV system tilted with certain angle) when using dual axis PV solar tracking systems, at any given location on earth without prior experimental data. Based on equations derived from model, minimum and maximum energy gain </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">is</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> computed and summarized in tables of minimum and maximum. Furthermore</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> the model equations could be used to set up future experimental studies related to the matter.
文摘The area covered by this study is the county of Kakobola and its surroundings. Previous studies show that those related to the study of depths by the gravity method, using other techniques, are not always carried out until now. The main goal of this article is the gravimetric characterization of our area by other approach. The interest is not only to map the lineaments and to know their dip, but also to estimate the depths of these different anomalies. The methods used for this study are the first total horizontal derivative (FTHDT), tilt angle (TA), analytical signal (AS) and horizontal gradient magnitude (HGM). The processing of the complete Bouguer anomalies (CBA) data was done mainly through software. Data analysis using the semi-finished body depth method shows depths ranging from 7.49 m to 224.6 m. Data analysis using the AS method shows values ranging from 41.7 mGal/m to 510 mGal/m. The fractures and/or geological contacts in our study area show dips ranging from -73.73° to 68.16° and North-South orientation according to the tilt angle method. The FTHDT shows several lineaments, a NE oriented fracture of Kakobola and low dip values which suggest a tabular structure of the subsurface in our study area. According to the HGM, the study area shows several preferential directions of fractures and/or geological contacts whose the most frequent directions are the NNE-SSW and WNW.
文摘In this article, research was conducted to improve Linter machines that remove short fibers remaining in ginned cotton seeds at cotton ginneries. The study examined the effect of changing the dimensions of the brush drum, guide and mesh surface in the cleaning device proposed for the linting machine on the movement of the peg and the cleaning efficiency, and the highest level of efficiency in separating impurities from the peg was determined. During the study, the main factors influencing the effective operation of the improved linting machine were identified, the limits of their values were determined, and studies were carried out using the mathematical modeling method. As a result, at the values of the given coefficients, efficient operation of the improved linting machine was observed, that is, the lint cleaning efficiency reached 55.1%.
文摘The titl angle measurement system based on the ADXL345 of three-axis acceleration sensor is introduced, and the composition and working principle of the system are described. The MSP430F149 microcontroller of ultra-low power and high performance is adopted. Firstly, the voltage value which is proportional to the acceleration value is output by ADXL345 when the system is powered. Secondly, the voltage value is converted into the corresponding digital signal by AD converter of the sensor. Thirdly, the digital signal is transformed into the titl angle according to the arithmetic processing of the MSP430F149. Finally, the corresponding angle is displayed on the liquid crystal display (LCD) screen. Experimental results show that the design has high sensitivity and response speed compared with the conventional methods. It is suitable for practical engineering application because of simple structure, low cost and low power consumption.
基金Aeronautical Development Agency (ADA), Bangalore, India, for the financial support to carry out this investigation through an R&D project No: FSED 83.07.03
文摘Friction stir welding(FSW)has been extensively adopted to fabricate aluminium alloy joints by incorporating various welding parameters that include welding speed,rotational speed,diameters of shoulder and pin and tool tilt angle.FSW parameters significantly affect the weld strength.Tool tilt angle is one of the significant process parameters among the weld parameters.The present study focused on the effect of tool tilt angle on strength of friction stir lap welding of AA2014-T6 aluminium alloy.The tool tilt angle was varied between 0°and 4°with an equal increment of 1°.Other process parameters were kept constant.Macrostructure and microstructure analysis,microhardness measurement,scanning electron micrograph,transmission electron micrograph and energy dispersive spectroscopy analysis were performed to evaluate the lap shear strength of friction stir lap welded joint.Results proved that,defect-free weld joint was obtained while using a tool tilt angle of 1°to 3°.However,sound joints were welded using a tool tilt angle of 2°,which had the maximum lap shear strength of 14.42 kN and microhardness of HV 132.The joints welded using tool tilt angles of 1°and 3°yielded inferior lap shear strength due to unbalanced material flow in the weld region during FSW.
文摘To estimate the monthly averaged solar radiations (global, diffuse and direct solar radiation) on horizontal surface and tilted surface over 10 stations (districts) in Bangladesh, thirty years monthly averaged data of various meteorological parameters namely the monthly averaged value of maximum temperature, minimum temperature, humidity and sunshine hours were used in this study. Assessment of the solar resources for the solar based renewable energy technologies of Bangladesh may be based upon this kind of measured data analyzed study. This study tried to estimate the monthly averaged solar radiation by presenting data in table and graph and finally analyze through equations and descriptions. Correlation between the measurements of monthly averaged solar radiation and the meteorological parameters was given for the selected 10 stations in Bangladesh. In conclusion, we tried to make a comparison among solar radiation on horizontal surface, fixed 20.83<sup> ° </sup> (degree) optimal tilt angle and variable optimal tilt surface at Dhaka station.
文摘Aeromagnetic data for center-east Cameroon between the latitudes 3.5° to 4.5°N and longitudes 12° to 12.5°E are used to further study the subsurface area of this part of the geological Province of Central Africa and the Congo Craton. The GIS and GEOSOFT v6.5 softwares are used to treat the data. This analysis enabled us to explore our study area from surface right to the base. The Tilt Angle method is used to delineate geological structures and to estimate the depth. The Euler’s deconvolution method is used to estimate the specific depth of structural contacts. We estimate the northern boundary of the Congo Craton and southern boundary of the Pan-African starting from 3°7'N of West to 3°75'N of East. Its depth is estimated around 2.6 km for deep and 0.1 km for shallow while the direction is WSW-ENE and the NW slope varies from 30° to 60°. We obtain that main and minor lineaments exist throughout, from the surface to the base of the area with their principal direction being SW-NE. We also obtain the vertical gradient contact and the quasihorizontal contact. This is proof of the subduction of the Pan-African belt under the Congo Craton due to the intense collision which caused the rejuvenation of the crust. The main consequence of this collision is the formation of pudding and fold structures, beginning from the superficial part right to the base and which caused the intrusion of schistose, chlorite-schist, quartzite in the micaschist and the intrusions of gneiss and garnetiferous schist in the migmatite. In our study, we highlight the presence of 37 major and 523 minor lineaments that localize the circulation of minerals. The probable slope of the lineaments in the northern part of the region varies from 30° to 60° in a SE direction while in the southern part, and it varies from 30° to 60° in a NW direction.
文摘A design of a slot bushing with a volumetric field has been developed, which allows to produce continuous fibers from melts with difficult processing characteristics in order to produce fibers with better operating characteristics. The operability of the design was confirmed when solving two problems of special technological complexity. 1. 400 and 800 orifice bushings for production of continuous fibers from the basalt melt have been developed and recommended for manufacture. 2. The process of production of continuous fibers from standard glass using 2400 orifice bushing with perforated plates instead of orifice tips without air cooling, has been realized for the first time.
文摘Solar collectors can provide clean, renewable, and domestic energy. The tilt angle and horizontal direction of solar collectors significantly affect its efficiency. There are many good methods to search the optimum tilt angle and horizontal direction to realize the maximum total radiation on the solar collector within a particular day or a specific period. However, it is hard to realize it when solar collectors are placed under obstacle’s shadows;especially when some obstacles, such as trees, have irregular shapes. This paper presents algorithms to achieve the best tilt angle and horizontal direction for solar collector’s performance under the free-form surfaces 3D obstacle’s shadow. The solution process is composed of 4 steps. First, it creates a 3D scene, in which a unique color is given to the solar collector. Second, it employs orthographic projection from the point of view to get an image of the scene. Third, the number of pixels is used to represent the efficiency of the solar collector by counting the pixels of the unique color. Fourth, the efficiency of solar collector in each direction in a period of time is calculated with many images to further select the best direction.
文摘The DJADOM-ETA area is in south-eastern of Cameroon, within the Congo Craton (CC) formations and composed of gneiss and amphibolite, migmatites and intrusive rocks. Few geophysical studies have been carried out over surrounding areas, but no investigation on the study area. The existence of aeromagnetic data covering the study area has motivated the application of a multiscale approach for tectonic features identification. The aim of this work is to interpret Aeromagnetic Data for Geological and Structural Mappings in the southeastern Cameroon. The GIS and GEOSOFT v8.4 softwares are used to treat data of Compagnie Minière du Cameroun getting in February 2012. The Tilt Angle method is used to delineate geological structures and to estimate the depth. The Euler’s Deconvolution method is used to estimate the specific depth of structural contacts. The presence of bifurcations, accompanied by virgations, leading to the occurrence of several faults. Principal lineaments are determined with the main direction being ESE-WNW and E-W for the minor lineaments. The study highlights two major faults: ESE-WNW and ENE-WSW, where the former dominates, what could be called the geological accident of ETA. The Euler’s Correlation and Tilt derivative contact map shows that most of the faults are vertical contacts. The geometrical description of this structure suggests an open synclinal transposed on vertical foliations: the major fault at the DJADOM axis is quasi-parallel to the Northern limit of the CC and parallel to the Sanaga Fault (SF) and the Central Cameroon Shear Zone (CCSZ). The features show a base strongly affected by tectonic which characterizes the transition between the zone from the CC and the belt from folds of the Pan-African. Also, the presence of the network characterizes the subsurface undulation in this study area: the intrusion of sandstone ochre quartz and schist of the Bek complex, the dolerite of the doleritic complex, and the silver micaschiste and ore quartzite in the base complex. On the TMI anomalies map, several places show high susceptibility contrasts, which is an indication of strong magnetization. Geological indicators point to inferred magnetite, dolerite and ochre schist quartzite which have a strong magnetization in this zone. The presence of weakly magnetized anomalies would be due to the migmatites of the base complex series. This study improved the knowledge of the subsurface structure of this area. It highlighted two major and minor faults. TMI anomalies map, in several places shows high susceptibility contrasts, which is an indication of strong magnetization.