The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the vari...The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.展开更多
This paper reports different concentration patterns of n-alkanes distribution in the sedi- ments from the Chukchi Sea, the Bering Sea in the Arctic. Factor statistical analysis method is used for studying the source o...This paper reports different concentration patterns of n-alkanes distribution in the sedi- ments from the Chukchi Sea, the Bering Sea in the Arctic. Factor statistical analysis method is used for studying the source of n-alkanes and paleoenvironment. The result shows that n-alkanes is in the range of nC15-nC33 and n-alkane distribution patterns are characterized by two modes. The first mode belongs to the higher molecular with MH being nC25-nC27, CPI > 1 and with remarkable odd-even dominance. They are of terrigenous plant origin. The second one belongs to lower carbon range with MH being nC17 -nC20, CPI > 1 and with indistinct odd-even dominance. Therefore they are contributed by marine bio- logicla inputs. The contribution of land origin is larger than that of marine source. Pr/Ph is lower than 1 in the investigated area, which indicates the depositional environment of reducing reaction with lower oxygen. The result of factor analysis has good agreement with composition characteristics of n-alkanes in the sediment.展开更多
Upper ocean mixing plays a key role in the atmosphere-ocean heat transfer and sea ice extent and thickness via modulating the upper ocean temperatures in the Arctic Ocean.Observations of diffusivities in the Arctic th...Upper ocean mixing plays a key role in the atmosphere-ocean heat transfer and sea ice extent and thickness via modulating the upper ocean temperatures in the Arctic Ocean.Observations of diffusivities in the Arctic that directly indicate the ocean mixing properties are sparse.Therefore,the spatiotemporal pattern and magnitude of diapycnal diffusivities and kinetic energy dissipation rates in the upper Arctic Ocean are important for atmosphere-ocean heat transfers and sea ice changes.These were first estimated from the Ice-Tethered Profilers dataset(2005–2019)using a strain-based fine-scale parameterization.The resultant mixing properties showed signifi cant geographical inhomogeneity and temporal variability.Diapycnal diff usivities and dissipation rates in the Atlantic sector of the Arctic Ocean were stronger than those on the Pacific side.Mixing in the Atlantic sector increased significantly during the observation period;whereas in the Pacific sector,it weakened before 2011 and then strengthened.Potential impact factors include wind,sea ice,near inertial waves,and stratifi cation,while their relative contributions vary between the two sectors of the Arctic Ocean.In the Atlantic sector,turbulent mixing dominated,while in the Pacific sector,turbulent mixing was inhibited by strong stratification prior to 2011,and is able to overcome the stratifi cation gradually after 2014.The vertical turbulent heat fl ux constantly increased in the Atlantic sector year by year,while it decreased in the Pacific sector post 2010.The estimated heat flux variability induced by enhanced turbulent mixing is expected to continue to diminish sea ice in the near future.展开更多
An improved least mean square/fourth direct adaptive equalizer(LMS/F-DAE)is proposed in this paper for underwater acoustic communication in the Arctic.It is able to process complex-valued baseband signals and has bett...An improved least mean square/fourth direct adaptive equalizer(LMS/F-DAE)is proposed in this paper for underwater acoustic communication in the Arctic.It is able to process complex-valued baseband signals and has better equalization performance than LMS.Considering the sparsity feature of equalizer tap coefficients,an adaptive norm(AN)is incorporated into the cost function which is utilized as a sparse regularization.The norm constraint changes adaptively according to the amplitude of each coefficient.For small-scale coefficients,the sparse constraint exists to accelerate the convergence speed.For large-scale coefficients,it disappears to ensure smaller equalization error.The performance of the proposed AN-LMS/F-DAE is verified by the experimental data from the 9th Chinese National Arctic Research Expedition.The results show that compared with the standard LMS/F-DAE,AN-LMS/F-DAE can promote the sparse level of the equalizer and achieve better performance.展开更多
A series of non-hydrostatic,non-linear numerical simulations were carried out to investigate the generation and evolution of internal solitary waves(ISWs)through the interaction of a barotropic tidal current with an i...A series of non-hydrostatic,non-linear numerical simulations were carried out to investigate the generation and evolution of internal solitary waves(ISWs)through the interaction of a barotropic tidal current with an ice keel in the Arctic Ocean.During the interaction process,the internal surge was generated at first,and then the wave gradually steepened due to non-linearity during its propagation away from the ice keel.The internal surge eventually disintegrated into multi-modal and rank-ordered ISW packets with the largest having an amplitude of O(10)m.Sensitivity experiments demonstrated that the ISWs’amplitudes and energy were proportional to the varying ice keel depths and barotropic tidal fl ow amplitudes,but were insensitive to the changing ice keel widths.Typical ISWs can enhance the turbulent dissipation rate of O(10^(-6))W/kg along their propagation path.Further,heat entrainment induced by the wave-ice interaction can reach O(10)MJ/m per tidal cycle.This study reveals a particular ISW generation mechanism and process in the polar ice environment,which could be important in impacting the energy transfer and heat balance in the Arctic Ocean.展开更多
This paper introduces the preparatory work and conducts an integrated review on the maiden voyage of a Chinese commercial ship on the Arctic Northeast Route. It puts forth expectations on the exploitation and utilizat...This paper introduces the preparatory work and conducts an integrated review on the maiden voyage of a Chinese commercial ship on the Arctic Northeast Route. It puts forth expectations on the exploitation and utilization of the Arctic Northeast Route in the aspects of safety, fastness, low costs, low consumption of energy and less pollution, knowledge of maritime law and navigation practice, building seaworthiness ships and making studies on the methods of sailing and maneuvering for navigation in polar waters, training qualified seafarers with navigation experiences in ice waters and establishing a safeguard system for the navigation in this route through the analysis on the weather, temperature, ice condition, route and hydrology encountered in the practice of a Chinese merchant ship in its maiden voyage in the route, and studies on the ice pilotage, convoy by icebreaker, practical condition of communication and navigation equipment in sea areas of high latitude and the economic benefit of the navigation in the Arctic Northeast Route.展开更多
The Siberian-Icelandic hotspot track is the only preserved continental hotspot track. Although the track and its associated age progression between 160 Ma and 60 Ma are not yet well understood, this section of the tra...The Siberian-Icelandic hotspot track is the only preserved continental hotspot track. Although the track and its associated age progression between 160 Ma and 60 Ma are not yet well understood, this section of the track is closely linked to the tectonic evolution of Amerasian Basin, the Alpha-Mendeleev Ridge and Baffin Bay. Using paleomagnetic data, volcanic structures and marine geophysical data, the paleogeography of Arctic plates (Eurasian plate, North American Plate, Greenland Plate and Alaska Microplate) was reconstructed and the Siberian-Icelandic hotspot track was interlinked between 160 Ma and 60 Ma. Our results suggested that the Alpha-Mendeleev Ridge could be a part of the hotspot track that formed between 160 Ma and 120 Ma. During this period, the hotspot controlled the tectonic evolution of Baffin Bay and the distribution of mafic rock in Greenland. Throughout the Mesozoic Era, the aforementioned Arctic plates experienced clockwise rotation and migrated northeast towards the North Pacific. The vertical influence from the ancient Icelandic mantle plume broke this balance, slowing down some plates and resulting in the opening of several ocean basins. This process controlled the tectonic evolution of the Arctic.展开更多
On the basis of the arctic monthly mean sea ice extent data set during 1953-1984, the arctic region is divided into eight subregions,and the analyses of empirical orthogonal functions, power spectrum and maximum entro...On the basis of the arctic monthly mean sea ice extent data set during 1953-1984, the arctic region is divided into eight subregions,and the analyses of empirical orthogonal functions, power spectrum and maximum entropy spectrum are made to indentify the major spatial and temporal features of the sea ice fluctuations within 32-year period. And then, a brief appropriate physical explanation is tentatively suggested. The results show that both seasonal and non-seasonal variations of the sea ice extent are remarkable, and iis mean annual peripheral positions as well as their interannu-al shifting amplitudes are quite different among all subregions. These features are primarily affected by solar radiation, o-cean circulation, sea surface temperature and maritime-continental contrast, while the non-seasonal variations are most possibly affected by the cosmic-geophysical factors such as earth pole shife, earth rotation oscillation and solar activity.展开更多
Based on radar penetrating measurements and analysis of sea ice in the Arctic Ocean, The potential of radar wave to measure sea ice thickness and map the morphology of the underside of sea ice is investigated. The res...Based on radar penetrating measurements and analysis of sea ice in the Arctic Ocean, The potential of radar wave to measure sea ice thickness and map the morphology of the underside of sea ice is investigated. The results indicate that the radar wave can penetrate Arctic summer sea ice of over 6 meters thick; and the propagation velocity of the radar wave in sea ice is in the range of 0.142 m·ns -1 to 0.154 m·ns -1 . The radar images display the roughness and micro-relief variation of sea ice bottom surface. These features are closely related to sea ice types, which show that radar survey may be used to identify and classify ice types. Since radar images can simultaneously display the linear profile features of both the upper surface and the underside of sea ice, we use these images to quantify their actual linear length discrepancy. A new length factor is suggested in relation to the actual linear length discrepancy in linear profiles of sea ice, which may be useful in further study of the area difference between the upper surface and bottom surface of sea ice.展开更多
Siberia-Iceland hot-spot track is the one of hot-spot track preserved on continent.Although this hot-spot track has clear plume"heads"-Siberia large igneous province,owing to thick continental lithosphere,it...Siberia-Iceland hot-spot track is the one of hot-spot track preserved on continent.Although this hot-spot track has clear plume"heads"-Siberia large igneous province,owing to thick continental lithosphere,its continuing展开更多
The accuracy of the cloud-aerosol lidar with orthogonal polarization (CALIOP), moderate resolution imaging spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Geostationary Ope...The accuracy of the cloud-aerosol lidar with orthogonal polarization (CALIOP), moderate resolution imaging spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Geostationary Operational Environmental Satellite (GOES) aerosol optical depth (AOD) products for the Arctic north of 59.75°N was examined by means of 35 aerosol robotic network (AERONET) AOD sites. The assessment for June to October 2006 to 2020 showed MAIAC AOD agreed the best with AERONET AOD;CALIOP AOD differed the strongest from the AERONET AOD. Cross-correlations of CALIOP AOD along the satellite path indicated that AOD-values 40 km up-and-down the path often failed to represent the AERONET AOD-values within ±30 min of the overpass in this region dominated by easterly winds. Typically, CALIOP AOD was lower than AERONET AOD and MAIAC AOD at the sites, especially, at sites with mean AOD below 0.1. Generally, MODIS AOD values exceeded those of MAIAC. Comparison of CALIOP, MAIAC, and MODIS products resampled on a 0.25° × 0.25° grid revealed differences among the products caused by their temporal and spatial resolution, sample habit and size. Typically, the MODIS AOD-product showed the most details in AOD distribution. Despite differences in AOD-values, all products provided similar temporal evolution of elevated and lower AOD.展开更多
Seasonal meltwater input creates a thin freshen layer in surface seawater under ice, which largely shifts the algae assemblages. Our recent observation of photosynthetic pigments in the high Arctic showed that ice bot...Seasonal meltwater input creates a thin freshen layer in surface seawater under ice, which largely shifts the algae assemblages. Our recent observation of photosynthetic pigments in the high Arctic showed that ice bottom and 5 m of seawater under ice contained relatively high concentration of fucoxanthin, while chlorophyll b and lutein were the major diagnostic pigments in ice-water interface and 0 m of seawater under ice. Additionally, a notable change of dominant phytoplankton occurred in the top 5 m of seawater under ice, from chlorophytes-dominated at surface to diatoms-dominated at 5 m depth, which might attribute to the sharp salinity gradient (salinity from 12.5 to 28.1) in the surface seawater under ice. Our results imply that phytoplankton community in surface layer under ice would become more chlorophytes in the future warming Arctic Ocean.展开更多
Although the Arctic methane reservoir is large,the emission of methane from the Arctic Ocean into the atmosphere remains poorly constrained.Continuous ship-borne measurements of atmospheric methane near the surface oc...Although the Arctic methane reservoir is large,the emission of methane from the Arctic Ocean into the atmosphere remains poorly constrained.Continuous ship-borne measurements of atmospheric methane near the surface ocean were carried out during two cruises to investigate methane emission from the Arctic Ocean up to the latitude of 87°N.Three-day air mass back trajectories along the cruise tracks indicated that the surface Arctic Ocean could be a potentially important source of methane to the atmosphere.Rapid bursts in methane concentration occurred mainly along the ocean frontal area,suggesting that frontal upwelling in the upper layer of the Arctic Ocean might contribute to methane emissions into the atmosphere.展开更多
Including significant warming trend,Arctic climate changes also exhibit strong interannual variations in various fields,which is suggested to be related to El Nino and Southern Oscillation(ENSO)events.Previous studies...Including significant warming trend,Arctic climate changes also exhibit strong interannual variations in various fields,which is suggested to be related to El Nino and Southern Oscillation(ENSO)events.Previous studies have demonstrated the different impacts on the Arctic of central Pacific(CP)and eastern Pacific(EP)ENSO events,and suggested these impacts are largely of opposite sign for ENSO warm and cold phases.Our results illustrate asymmetrical changes for the cold and warm ENSO events,especially for the La Nina events.Compared to the past frequent basin-wide cooling La Nina events,since the 1980 s the cooling center for the La Nina event has strengthened and moved westward along with the increasing frequency for the canonical and CP La Nina events.Contrary to the basin-wide cooling and canonical La Nina events,the frequent CP La Nina events induce significant warming from the Beaufort Sea to Greenland via the convection center moving northward over the western Pacific.Observation analysis and numerical experiments both suggest that the changes in La Nina type may also accelerate Arctic warming.展开更多
Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol o...Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span>展开更多
Freely available data of sulfur dioxide (SO2), ammonia (NH3), nitrogen dioxide (NO2), ozone (O3), and particulate matter (PM) observed in Arctic cities (north of 59.99 N) between 1972 and 2016 were compiled into an ai...Freely available data of sulfur dioxide (SO2), ammonia (NH3), nitrogen dioxide (NO2), ozone (O3), and particulate matter (PM) observed in Arctic cities (north of 59.99 N) between 1972 and 2016 were compiled into an air-quality inventory of samples taken for limited periods. For cities with multiple years of data, air-quality climatology was determined in terms of daily means in the annual course. Mean urban air-quality climatology was calculated for regions of similar insolation, emission standards, topography, Köppen-Geiger classification, and city size. Urban concentrations of PM precursors (SO2, NH3, NO2), PM2.5 and PM10 (PM with diameter less than 2.5 and 10 μm) were assessed in the sense of climatology with evidence from current knowledge. Typically, annual SO2 and NO2 means were lower for small than large Arctic cities, but can vary more than an order of magnitude over short distance. Cities seeing seasonal sea-ice had W-shaped mean annual courses of daily O3, while other cities had a spring maximum. Typically, annual means of urban pollutants in North America exceeded those in Scandinavia except for O3, where the opposite was true. Annual mean urban PM2.5 and PM10 concentrations varied from 1.6 to 21.2 μg·m-3 and 2 to 18.2 μg·m-3, respectively. Since PM10 encompasses PM2.5, annual PM10 means must be at least 21.2 μg·m-3. According to rural-to-urban ratios of species, seasonal transport of pollutants from wildfires, shipping, and the Kola Peninsula mining area occurred at some sites in Interior Alaska, western and northern Norway, respectively. Concurrent SO2 and PM or NO2 and PM measurements revealed combustion or traffic as major contributors to urban concentrations. Recommendations for potential future measurements of Arctic urban air quality were given based on the assessments of climatology and inventory.展开更多
Evaluation on a regional climate model was made with five-month atmospheric simulations over the Arctic river basins. The simulations were performed with a modified mesoscale model, Polar MM5 coupled to the NCAR Land ...Evaluation on a regional climate model was made with five-month atmospheric simulations over the Arctic river basins. The simulations were performed with a modified mesoscale model, Polar MM5 coupled to the NCAR Land Surface Model (LSM) to illustrate the skill of the coupled model (Polar MM5+LSM) in simulating atmospheric circulation over the Arctic river basins. Near-surface and upper-air observations were used to verify the simulations. Sensitivity studies between the Polar MM5 and Polar MM5+LSM simulations revealed that the coupled model could improve the forecast skill for surface variables at some sites. In addition, the extended evaluations of the coupled model simulations on the North American Arctic domain during December 15, 2002 to May 15, 2003 were carried out. The time series plots and statistics of the observations and Polar MM5+LSM simulations at six stations for near-surface and vertical profiles at 850 hPa and 500 hPa were analyzed. The model was found capable of reproducing the observed atmospheric behavior in both magnitude and variability, especially for temperature and near-surface wind direction.展开更多
Science diplomacy is attracting increasing attention in the international relations literature.This study investigates how Chinese scientists understand this term and explores China’s dynamic praxis in Arctic climate...Science diplomacy is attracting increasing attention in the international relations literature.This study investigates how Chinese scientists understand this term and explores China’s dynamic praxis in Arctic climate governance.It conducts a theoretical and practical examination of science diplomacy in terms of three dimensions—science in diplomacy,diplomacy for science,and science for diplomacy—thus achieving a high degree of consistency.A multi-method approach,combining qualitative and quantitative research methodologies and involving the adoption of a literature review,participant interviews,and questionnaires,is adopted.Data were collected from interviews with 16 Chinese scientists involved in Arctic climate governance and from 130 valid questionnaires collected from Chinese natural scientists working in the climate change field.Drawing on qualitative and quantitative findings,the study reveals that the three-dimensional framework of science diplomacy can provide insight into Chinese scientists’understandings of the topic.In contrast to the participants’vague theoretical responses,the outlines of China’s Arctic climate governance can be clearly identified within this framework.The study concludes by underlining the tension between theory and practice in terms of science diplomacy and highlighting the emerging challenges for China in developing its Arctic science diplomacy against the background of the COVID-19 pandemic and Russia-Ukraine conflict.Moreover,it is suggested that,to further develop China’s Arctic science diplomacy,it is vital to take account of the deficiencies in China’s science diplomacy.The study’s empirical results contribute to an understanding of the dynamic nature of science diplomacy in the Chinese context.展开更多
The strategic partnership between China and Russia is creating solid ground for the cooperative development of the Arctic. These two states' joint development of the Northern Sea Route will not only provide additiona...The strategic partnership between China and Russia is creating solid ground for the cooperative development of the Arctic. These two states' joint development of the Northern Sea Route will not only provide additional impulse to the export- oriented economy of China and allow further diversification of supply routes to China, but will also promote investment into the infrastructure and economic growth of Russian northern territories. Climate change in the Arctic has forced China and Russia to acknowledge the sustainable use of the Arctic. On the one hand, exploration of the region should not harm indigenous people's rights and should help this population improve their standard of living by providing qualified healthcare and opportunities for commercial fulfillment of traditional crafts. On the other hand, this exploration should also include elimination of harmful anthropogenic impact and provide support for environment self-restoration. Sino-Russian Arctic cooperation will help humans discover eco-friendly approaches to use Arctic resources, promote rational use of the Arctic and inspire sustainable development of the region.展开更多
基金This research was supported by the National Natural Science Foundation of China un-der Grant No.40233033.
文摘The influences of the wintertime AO (Arctic Oscillation) on the interdecadal variation of summer monsoon rainfall in East Asia were examined. An interdecadal abrupt change was found by the end of the 1970s in the variation of the AO index and the leading principal component time series of the summer rainfall in East Asia. The rainfall anomaly changed from below normal to above normal in central China, the southern part of northeastern China and the Korean peninsula around 1978. However, the opposite interdecadal variation was found in the rainfall anomaly in North China and South China. The interdecadal variation of summer rainfall is associated with the weakening of the East Asia summer monsoon circulation. It is indicated that the interdecadal variation of the AO exerts an influence on the weakening of the monsoon circulation. The recent trend in the AO toward its high-index polarity during the past two decades plays important roles in the land-sea contrast anomalies and wintertime precipitation anomaly. The mid- and high-latitude regions of the Asian continent are warming, while the low-latitude regions are cooling in winter and spring along with the AO entering its high-index polarity after the late 1970s. In the meantime, the precipitation over the Tibetan Plateau and South China is excessive, implying an increase of soil moisture. The cooling tendency of the land in the southern part of Asia will persist until summer because of the memory of soil moisture. So the warming of the Asian continent is relatively slow in summer. Moreover, the Indian Ocean and Pacific Ocean, which are located southward and eastward of the Asian land, are warming from winter to summer. This suggests that the contrast between the land and sea is decreased in summer. The interdecadal decrease of the land-sea heat contrast finally leads to the weakening of the East Asia summer monsoon circulation.
基金This study was supported by The NKBRSF Project under contract No. G2000078500 and the First Chinese NationalScientific Expedit
文摘This paper reports different concentration patterns of n-alkanes distribution in the sedi- ments from the Chukchi Sea, the Bering Sea in the Arctic. Factor statistical analysis method is used for studying the source of n-alkanes and paleoenvironment. The result shows that n-alkanes is in the range of nC15-nC33 and n-alkane distribution patterns are characterized by two modes. The first mode belongs to the higher molecular with MH being nC25-nC27, CPI > 1 and with remarkable odd-even dominance. They are of terrigenous plant origin. The second one belongs to lower carbon range with MH being nC17 -nC20, CPI > 1 and with indistinct odd-even dominance. Therefore they are contributed by marine bio- logicla inputs. The contribution of land origin is larger than that of marine source. Pr/Ph is lower than 1 in the investigated area, which indicates the depositional environment of reducing reaction with lower oxygen. The result of factor analysis has good agreement with composition characteristics of n-alkanes in the sediment.
基金Supported by the National Key Research and Development Program of China(Nos.2019YFE0105700,2017YFA0604102)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDB42000000,XDA22050202)+2 种基金the National Natural Science Foundation of China(Nos.92058202,41676006,42176244)the Key Deployment Project of Centre for Ocean Mega-Research of Science,Chinese Academy of Sciences(No.COMS2020Q07)the CAS-CSIRO Jointly MHW Project(No.133244KYSB20190031)。
文摘Upper ocean mixing plays a key role in the atmosphere-ocean heat transfer and sea ice extent and thickness via modulating the upper ocean temperatures in the Arctic Ocean.Observations of diffusivities in the Arctic that directly indicate the ocean mixing properties are sparse.Therefore,the spatiotemporal pattern and magnitude of diapycnal diffusivities and kinetic energy dissipation rates in the upper Arctic Ocean are important for atmosphere-ocean heat transfers and sea ice changes.These were first estimated from the Ice-Tethered Profilers dataset(2005–2019)using a strain-based fine-scale parameterization.The resultant mixing properties showed signifi cant geographical inhomogeneity and temporal variability.Diapycnal diff usivities and dissipation rates in the Atlantic sector of the Arctic Ocean were stronger than those on the Pacific side.Mixing in the Atlantic sector increased significantly during the observation period;whereas in the Pacific sector,it weakened before 2011 and then strengthened.Potential impact factors include wind,sea ice,near inertial waves,and stratifi cation,while their relative contributions vary between the two sectors of the Arctic Ocean.In the Atlantic sector,turbulent mixing dominated,while in the Pacific sector,turbulent mixing was inhibited by strong stratification prior to 2011,and is able to overcome the stratifi cation gradually after 2014.The vertical turbulent heat fl ux constantly increased in the Atlantic sector year by year,while it decreased in the Pacific sector post 2010.The estimated heat flux variability induced by enhanced turbulent mixing is expected to continue to diminish sea ice in the near future.
基金The National Natural Science Foundation of China under contract Nos 61631008 and 61901136the National Key Research and Development Program of China under contract No.2018YFC1405904+3 种基金the Fok Ying-Tong Education Foundation under contract No.151007the Heilongjiang Province Outstanding Youth Science Fund under contract No.JC2017017the Opening Funding of Science and Technology on Sonar Laboratory under contract No.6142109KF201802the Innovation Special Zone of National Defense Science and Technology.
文摘An improved least mean square/fourth direct adaptive equalizer(LMS/F-DAE)is proposed in this paper for underwater acoustic communication in the Arctic.It is able to process complex-valued baseband signals and has better equalization performance than LMS.Considering the sparsity feature of equalizer tap coefficients,an adaptive norm(AN)is incorporated into the cost function which is utilized as a sparse regularization.The norm constraint changes adaptively according to the amplitude of each coefficient.For small-scale coefficients,the sparse constraint exists to accelerate the convergence speed.For large-scale coefficients,it disappears to ensure smaller equalization error.The performance of the proposed AN-LMS/F-DAE is verified by the experimental data from the 9th Chinese National Arctic Research Expedition.The results show that compared with the standard LMS/F-DAE,AN-LMS/F-DAE can promote the sparse level of the equalizer and achieve better performance.
基金Supported by the National Key Research and Development Program of China and National Natural Science Foundation of China(Nos.2019YFE0105700,2016YFC1402705,2017YFA0604102,92058202,91858103,42176244,2016YFC1401404)the Strategic Priority Research Program of Chinese Academy of Sciences(Nos.XDA22050202,XDB42000000)+1 种基金the CAS Key Research Program of Frontier Sciences and Key Deployment Project of Centre for Ocean Mega-Research of Science(Nos.QYZDB-SSW-DQC024,COMS2020Q07)the project jointly funded by the CAS and CSIRO(No.133244KYSB20190031)。
文摘A series of non-hydrostatic,non-linear numerical simulations were carried out to investigate the generation and evolution of internal solitary waves(ISWs)through the interaction of a barotropic tidal current with an ice keel in the Arctic Ocean.During the interaction process,the internal surge was generated at first,and then the wave gradually steepened due to non-linearity during its propagation away from the ice keel.The internal surge eventually disintegrated into multi-modal and rank-ordered ISW packets with the largest having an amplitude of O(10)m.Sensitivity experiments demonstrated that the ISWs’amplitudes and energy were proportional to the varying ice keel depths and barotropic tidal fl ow amplitudes,but were insensitive to the changing ice keel widths.Typical ISWs can enhance the turbulent dissipation rate of O(10^(-6))W/kg along their propagation path.Further,heat entrainment induced by the wave-ice interaction can reach O(10)MJ/m per tidal cycle.This study reveals a particular ISW generation mechanism and process in the polar ice environment,which could be important in impacting the energy transfer and heat balance in the Arctic Ocean.
文摘This paper introduces the preparatory work and conducts an integrated review on the maiden voyage of a Chinese commercial ship on the Arctic Northeast Route. It puts forth expectations on the exploitation and utilization of the Arctic Northeast Route in the aspects of safety, fastness, low costs, low consumption of energy and less pollution, knowledge of maritime law and navigation practice, building seaworthiness ships and making studies on the methods of sailing and maneuvering for navigation in polar waters, training qualified seafarers with navigation experiences in ice waters and establishing a safeguard system for the navigation in this route through the analysis on the weather, temperature, ice condition, route and hydrology encountered in the practice of a Chinese merchant ship in its maiden voyage in the route, and studies on the ice pilotage, convoy by icebreaker, practical condition of communication and navigation equipment in sea areas of high latitude and the economic benefit of the navigation in the Arctic Northeast Route.
基金supported by a grant from the China Ocean Mineral Resources Research and Development Association Project(Grant No.DY125-12-R-03)
文摘The Siberian-Icelandic hotspot track is the only preserved continental hotspot track. Although the track and its associated age progression between 160 Ma and 60 Ma are not yet well understood, this section of the track is closely linked to the tectonic evolution of Amerasian Basin, the Alpha-Mendeleev Ridge and Baffin Bay. Using paleomagnetic data, volcanic structures and marine geophysical data, the paleogeography of Arctic plates (Eurasian plate, North American Plate, Greenland Plate and Alaska Microplate) was reconstructed and the Siberian-Icelandic hotspot track was interlinked between 160 Ma and 60 Ma. Our results suggested that the Alpha-Mendeleev Ridge could be a part of the hotspot track that formed between 160 Ma and 120 Ma. During this period, the hotspot controlled the tectonic evolution of Baffin Bay and the distribution of mafic rock in Greenland. Throughout the Mesozoic Era, the aforementioned Arctic plates experienced clockwise rotation and migrated northeast towards the North Pacific. The vertical influence from the ancient Icelandic mantle plume broke this balance, slowing down some plates and resulting in the opening of several ocean basins. This process controlled the tectonic evolution of the Arctic.
文摘On the basis of the arctic monthly mean sea ice extent data set during 1953-1984, the arctic region is divided into eight subregions,and the analyses of empirical orthogonal functions, power spectrum and maximum entropy spectrum are made to indentify the major spatial and temporal features of the sea ice fluctuations within 32-year period. And then, a brief appropriate physical explanation is tentatively suggested. The results show that both seasonal and non-seasonal variations of the sea ice extent are remarkable, and iis mean annual peripheral positions as well as their interannu-al shifting amplitudes are quite different among all subregions. These features are primarily affected by solar radiation, o-cean circulation, sea surface temperature and maritime-continental contrast, while the non-seasonal variations are most possibly affected by the cosmic-geophysical factors such as earth pole shife, earth rotation oscillation and solar activity.
基金This work was supported by the National Natural Science Foundation of China(No.4007 1022,40231013)the Ministry of Science and technology,the People's Republic of China(No.2001DIA50040)Chinese Arctic expedition foundation and Laboratory foundation of Ice Core and Cold Region Environment,Cold and Arid Regions Environmental and Engineering Institute,Chinese Academy of Sciences(No.BX2001-04).
文摘Based on radar penetrating measurements and analysis of sea ice in the Arctic Ocean, The potential of radar wave to measure sea ice thickness and map the morphology of the underside of sea ice is investigated. The results indicate that the radar wave can penetrate Arctic summer sea ice of over 6 meters thick; and the propagation velocity of the radar wave in sea ice is in the range of 0.142 m·ns -1 to 0.154 m·ns -1 . The radar images display the roughness and micro-relief variation of sea ice bottom surface. These features are closely related to sea ice types, which show that radar survey may be used to identify and classify ice types. Since radar images can simultaneously display the linear profile features of both the upper surface and the underside of sea ice, we use these images to quantify their actual linear length discrepancy. A new length factor is suggested in relation to the actual linear length discrepancy in linear profiles of sea ice, which may be useful in further study of the area difference between the upper surface and bottom surface of sea ice.
文摘Siberia-Iceland hot-spot track is the one of hot-spot track preserved on continent.Although this hot-spot track has clear plume"heads"-Siberia large igneous province,owing to thick continental lithosphere,its continuing
文摘The accuracy of the cloud-aerosol lidar with orthogonal polarization (CALIOP), moderate resolution imaging spectroradiometer (MODIS), Multi-Angle Implementation of Atmospheric Correction (MAIAC), and Geostationary Operational Environmental Satellite (GOES) aerosol optical depth (AOD) products for the Arctic north of 59.75°N was examined by means of 35 aerosol robotic network (AERONET) AOD sites. The assessment for June to October 2006 to 2020 showed MAIAC AOD agreed the best with AERONET AOD;CALIOP AOD differed the strongest from the AERONET AOD. Cross-correlations of CALIOP AOD along the satellite path indicated that AOD-values 40 km up-and-down the path often failed to represent the AERONET AOD-values within ±30 min of the overpass in this region dominated by easterly winds. Typically, CALIOP AOD was lower than AERONET AOD and MAIAC AOD at the sites, especially, at sites with mean AOD below 0.1. Generally, MODIS AOD values exceeded those of MAIAC. Comparison of CALIOP, MAIAC, and MODIS products resampled on a 0.25° × 0.25° grid revealed differences among the products caused by their temporal and spatial resolution, sample habit and size. Typically, the MODIS AOD-product showed the most details in AOD distribution. Despite differences in AOD-values, all products provided similar temporal evolution of elevated and lower AOD.
基金The National Natural Science Foundation of China under contract Nos 41276198 and 41506222Chinese Polar Environment Comprehensive Investigation&Assessment Programs under contract Nos Chinare-03-04 and Chinare-04-03Scientific Research Fund of Second Institute of Oceanography,SOA under contract No.JG1323
文摘Seasonal meltwater input creates a thin freshen layer in surface seawater under ice, which largely shifts the algae assemblages. Our recent observation of photosynthetic pigments in the high Arctic showed that ice bottom and 5 m of seawater under ice contained relatively high concentration of fucoxanthin, while chlorophyll b and lutein were the major diagnostic pigments in ice-water interface and 0 m of seawater under ice. Additionally, a notable change of dominant phytoplankton occurred in the top 5 m of seawater under ice, from chlorophytes-dominated at surface to diatoms-dominated at 5 m depth, which might attribute to the sharp salinity gradient (salinity from 12.5 to 28.1) in the surface seawater under ice. Our results imply that phytoplankton community in surface layer under ice would become more chlorophytes in the future warming Arctic Ocean.
基金supported by the Project of Comprehensive Evaluation of Polar Areas on Global andRegional Climate Changes(Grant No.CHINARE2012-04-04)the National Natural Science Foundation of China(Grant No.41206027)+1 种基金the National Natural Science Foundation of China-Shandong Joint Fund for Marine Science Research Centers(Grant No.U14064)the Polar Strategic Research Foundation of China(Grant No.20120103)
文摘Although the Arctic methane reservoir is large,the emission of methane from the Arctic Ocean into the atmosphere remains poorly constrained.Continuous ship-borne measurements of atmospheric methane near the surface ocean were carried out during two cruises to investigate methane emission from the Arctic Ocean up to the latitude of 87°N.Three-day air mass back trajectories along the cruise tracks indicated that the surface Arctic Ocean could be a potentially important source of methane to the atmosphere.Rapid bursts in methane concentration occurred mainly along the ocean frontal area,suggesting that frontal upwelling in the upper layer of the Arctic Ocean might contribute to methane emissions into the atmosphere.
基金The Shenzhen Fundamental Research Program under contract No.JCYJ20200109110220482the National Natural Science Foundation of China under contract No.U2006210the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0604。
文摘Including significant warming trend,Arctic climate changes also exhibit strong interannual variations in various fields,which is suggested to be related to El Nino and Southern Oscillation(ENSO)events.Previous studies have demonstrated the different impacts on the Arctic of central Pacific(CP)and eastern Pacific(EP)ENSO events,and suggested these impacts are largely of opposite sign for ENSO warm and cold phases.Our results illustrate asymmetrical changes for the cold and warm ENSO events,especially for the La Nina events.Compared to the past frequent basin-wide cooling La Nina events,since the 1980 s the cooling center for the La Nina event has strengthened and moved westward along with the increasing frequency for the canonical and CP La Nina events.Contrary to the basin-wide cooling and canonical La Nina events,the frequent CP La Nina events induce significant warming from the Beaufort Sea to Greenland via the convection center moving northward over the western Pacific.Observation analysis and numerical experiments both suggest that the changes in La Nina type may also accelerate Arctic warming.
文摘Collocated data of the moderate resolution imaging spectroradiometer (MO<span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS) Collection 6.1 aerosol optical depths (AOD) at 3 km × 3 km north of 59.9</span><span style="font-family:Verdana;">°</span><span style="font-family:Verdana;">N over ocean were assessed at 550 nm by aerosol robotic network (AERONET) data from coastal sites and marine aerosol network (MAN) data from vessels during June to October 2006 to 2018. Typically, MODIS AOD w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> higher at low and lower at high values than the AERONET AOD. Discrepancies were largest for sites where the Earth’s surface around the site is very heterogeneous (Canadian Archipelago, coast of Greenland). Due to the higher likelihood for sea-ice, MAN and MODIS AOD differed stronger west of Greenland and over the Beaufort Sea than at location in the Greenland and Norwegian Seas and Atlantic. MODIS AOD well captured the inter-seasonal variability found in the AERONET AOD data (R = 0.933). At all sites, MO</span><span style="font-family:Verdana;">-</span><span style="font-family:Verdana;">DIS and AERONET AOD agreement improved as time progressed in the shipping season, hinting at errors in sea-ice vs. open water classification. Overall 75.3% of the MODIS AOD data fell within the limits of the error envelops of the AERONET/MAN AOD data with MAN ranging between 87.5% and 100%. Changes in both MODIS and AERONET mean AOD between two periods of same length (2006-2011, 2013-2018) were explainable by changes in emissions for all sites</span><span style="font-family:Verdana;">.</span>
文摘Freely available data of sulfur dioxide (SO2), ammonia (NH3), nitrogen dioxide (NO2), ozone (O3), and particulate matter (PM) observed in Arctic cities (north of 59.99 N) between 1972 and 2016 were compiled into an air-quality inventory of samples taken for limited periods. For cities with multiple years of data, air-quality climatology was determined in terms of daily means in the annual course. Mean urban air-quality climatology was calculated for regions of similar insolation, emission standards, topography, Köppen-Geiger classification, and city size. Urban concentrations of PM precursors (SO2, NH3, NO2), PM2.5 and PM10 (PM with diameter less than 2.5 and 10 μm) were assessed in the sense of climatology with evidence from current knowledge. Typically, annual SO2 and NO2 means were lower for small than large Arctic cities, but can vary more than an order of magnitude over short distance. Cities seeing seasonal sea-ice had W-shaped mean annual courses of daily O3, while other cities had a spring maximum. Typically, annual means of urban pollutants in North America exceeded those in Scandinavia except for O3, where the opposite was true. Annual mean urban PM2.5 and PM10 concentrations varied from 1.6 to 21.2 μg·m-3 and 2 to 18.2 μg·m-3, respectively. Since PM10 encompasses PM2.5, annual PM10 means must be at least 21.2 μg·m-3. According to rural-to-urban ratios of species, seasonal transport of pollutants from wildfires, shipping, and the Kola Peninsula mining area occurred at some sites in Interior Alaska, western and northern Norway, respectively. Concurrent SO2 and PM or NO2 and PM measurements revealed combustion or traffic as major contributors to urban concentrations. Recommendations for potential future measurements of Arctic urban air quality were given based on the assessments of climatology and inventory.
基金Supported by the Polar Stratagem Fund of China (No.JD07-6).
文摘Evaluation on a regional climate model was made with five-month atmospheric simulations over the Arctic river basins. The simulations were performed with a modified mesoscale model, Polar MM5 coupled to the NCAR Land Surface Model (LSM) to illustrate the skill of the coupled model (Polar MM5+LSM) in simulating atmospheric circulation over the Arctic river basins. Near-surface and upper-air observations were used to verify the simulations. Sensitivity studies between the Polar MM5 and Polar MM5+LSM simulations revealed that the coupled model could improve the forecast skill for surface variables at some sites. In addition, the extended evaluations of the coupled model simulations on the North American Arctic domain during December 15, 2002 to May 15, 2003 were carried out. The time series plots and statistics of the observations and Polar MM5+LSM simulations at six stations for near-surface and vertical profiles at 850 hPa and 500 hPa were analyzed. The model was found capable of reproducing the observed atmospheric behavior in both magnitude and variability, especially for temperature and near-surface wind direction.
基金supported by the National Office for Philosophy and Social Sciences as part of the project titled“Strategic Competition and Cooperation in the Arctic among China,Russia,and the United States from the Perspective of Sustainable Development”(Grant no.20BGJ045)。
文摘Science diplomacy is attracting increasing attention in the international relations literature.This study investigates how Chinese scientists understand this term and explores China’s dynamic praxis in Arctic climate governance.It conducts a theoretical and practical examination of science diplomacy in terms of three dimensions—science in diplomacy,diplomacy for science,and science for diplomacy—thus achieving a high degree of consistency.A multi-method approach,combining qualitative and quantitative research methodologies and involving the adoption of a literature review,participant interviews,and questionnaires,is adopted.Data were collected from interviews with 16 Chinese scientists involved in Arctic climate governance and from 130 valid questionnaires collected from Chinese natural scientists working in the climate change field.Drawing on qualitative and quantitative findings,the study reveals that the three-dimensional framework of science diplomacy can provide insight into Chinese scientists’understandings of the topic.In contrast to the participants’vague theoretical responses,the outlines of China’s Arctic climate governance can be clearly identified within this framework.The study concludes by underlining the tension between theory and practice in terms of science diplomacy and highlighting the emerging challenges for China in developing its Arctic science diplomacy against the background of the COVID-19 pandemic and Russia-Ukraine conflict.Moreover,it is suggested that,to further develop China’s Arctic science diplomacy,it is vital to take account of the deficiencies in China’s science diplomacy.The study’s empirical results contribute to an understanding of the dynamic nature of science diplomacy in the Chinese context.
基金supported by the National Social Science Foundation of China“Study on the Construction of a Cooperative Legal Regime for Arctic Governance and China’s Effective Participation”(Grant no.16BFX188)
文摘The strategic partnership between China and Russia is creating solid ground for the cooperative development of the Arctic. These two states' joint development of the Northern Sea Route will not only provide additional impulse to the export- oriented economy of China and allow further diversification of supply routes to China, but will also promote investment into the infrastructure and economic growth of Russian northern territories. Climate change in the Arctic has forced China and Russia to acknowledge the sustainable use of the Arctic. On the one hand, exploration of the region should not harm indigenous people's rights and should help this population improve their standard of living by providing qualified healthcare and opportunities for commercial fulfillment of traditional crafts. On the other hand, this exploration should also include elimination of harmful anthropogenic impact and provide support for environment self-restoration. Sino-Russian Arctic cooperation will help humans discover eco-friendly approaches to use Arctic resources, promote rational use of the Arctic and inspire sustainable development of the region.