5G is envisioned to guarantee high transmission rate,ultra-low latency,high reliability and massive connections.To satisfy the above requirements,the 5G architecture is designed with the properties of using service-ba...5G is envisioned to guarantee high transmission rate,ultra-low latency,high reliability and massive connections.To satisfy the above requirements,the 5G architecture is designed with the properties of using service-based architecture,cloud-native oriented,adopting IT-based API interfaces and introduction of the Network Repository Function.However,with the wide commercialization of 5G network and the exploration towards 6G,the 5G architecture exposes the disadvantages of high architecture complexity,difficult inter-interface communication,low cognitive capability,bad instantaneity,and deficient intelligence.To overcome these limitations,this paper investigates 6G network architecture,and proposes a cognitive intelligence based distributed 6G network architecture.This architecture consists of a physical network layer and an intelligent decision layer.The two layers coordinate through flexible service interfaces,supporting function decoupling and joint evolution of intelligence services and network services.With the above design,the proposed 6G architecture can be updated autonomously to deal with the future unpredicted complex services.展开更多
Routers have traditionally been architected as two elements: forwarding plane and control plane through For CES or other protocols. Each forwarding plane aggregates a fixed amount of computing, memory, and network int...Routers have traditionally been architected as two elements: forwarding plane and control plane through For CES or other protocols. Each forwarding plane aggregates a fixed amount of computing, memory, and network interface resources to forward packets. Unfortunately, the tight coupling of packet-processing tasks with network interfaces has severely restricted service innovation and hardware upgrade. In this context, we explore the insightful prospect of functional separation in forwarding plane to propose a next-generation router architecture, which, if realized, can provide promises both for various packet-processing tasks and for flexible deployment while solving concerns related to the above problems. Thus, we put forward an alternative construction in which functional resources within a forwarding plane are disaggregated. A forwarding plane is instead separated into two planes: software data plane(SDP) and flow switching plane(FSP), and each plane can be viewed as a collection of "building blocks". SDP is responsible for packet-processing tasks without its expansibility restricted with the amount and kinds of network interfaces. FSP is in charge of packet receiving/transmitting tasks and can incrementally add switching elements, such as general switches, or even specialized switches, to provide network interfaces for SDP. Besides, our proposed router architecture uses network fabrics to achievethe best connectivity among building blocks,which can support for network topology reconfiguration within one device.At last,we make an experiment on our platform in terms of bandwidth utilization rate,configuration delay,system throughput and execution time.展开更多
This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends t...This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].展开更多
基金funded by Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center,the National Key R&D Program of China(2018YFE0205503)the National Natural Science Foundation of China(61902036,62032003,61922017)Fundamental Research Funds for the Central Universities。
文摘5G is envisioned to guarantee high transmission rate,ultra-low latency,high reliability and massive connections.To satisfy the above requirements,the 5G architecture is designed with the properties of using service-based architecture,cloud-native oriented,adopting IT-based API interfaces and introduction of the Network Repository Function.However,with the wide commercialization of 5G network and the exploration towards 6G,the 5G architecture exposes the disadvantages of high architecture complexity,difficult inter-interface communication,low cognitive capability,bad instantaneity,and deficient intelligence.To overcome these limitations,this paper investigates 6G network architecture,and proposes a cognitive intelligence based distributed 6G network architecture.This architecture consists of a physical network layer and an intelligent decision layer.The two layers coordinate through flexible service interfaces,supporting function decoupling and joint evolution of intelligence services and network services.With the above design,the proposed 6G architecture can be updated autonomously to deal with the future unpredicted complex services.
基金supported by Program for National Basic Research Program of China(973 Program)‘Reconfigurable Network Emulation Testbed for Basic Network Communication’(2012CB315906)
文摘Routers have traditionally been architected as two elements: forwarding plane and control plane through For CES or other protocols. Each forwarding plane aggregates a fixed amount of computing, memory, and network interface resources to forward packets. Unfortunately, the tight coupling of packet-processing tasks with network interfaces has severely restricted service innovation and hardware upgrade. In this context, we explore the insightful prospect of functional separation in forwarding plane to propose a next-generation router architecture, which, if realized, can provide promises both for various packet-processing tasks and for flexible deployment while solving concerns related to the above problems. Thus, we put forward an alternative construction in which functional resources within a forwarding plane are disaggregated. A forwarding plane is instead separated into two planes: software data plane(SDP) and flow switching plane(FSP), and each plane can be viewed as a collection of "building blocks". SDP is responsible for packet-processing tasks without its expansibility restricted with the amount and kinds of network interfaces. FSP is in charge of packet receiving/transmitting tasks and can incrementally add switching elements, such as general switches, or even specialized switches, to provide network interfaces for SDP. Besides, our proposed router architecture uses network fabrics to achievethe best connectivity among building blocks,which can support for network topology reconfiguration within one device.At last,we make an experiment on our platform in terms of bandwidth utilization rate,configuration delay,system throughput and execution time.
文摘This paper examines how cybersecurity is developing and how it relates to more conventional information security. Although information security and cyber security are sometimes used synonymously, this study contends that they are not the same. The concept of cyber security is explored, which goes beyond protecting information resources to include a wider variety of assets, including people [1]. Protecting information assets is the main goal of traditional information security, with consideration to the human element and how people fit into the security process. On the other hand, cyber security adds a new level of complexity, as people might unintentionally contribute to or become targets of cyberattacks. This aspect presents moral questions since it is becoming more widely accepted that society has a duty to protect weaker members of society, including children [1]. The study emphasizes how important cyber security is on a larger scale, with many countries creating plans and laws to counteract cyberattacks. Nevertheless, a lot of these sources frequently neglect to define the differences or the relationship between information security and cyber security [1]. The paper focus on differentiating between cybersecurity and information security on a larger scale. The study also highlights other areas of cybersecurity which includes defending people, social norms, and vital infrastructure from threats that arise from online in addition to information and technology protection. It contends that ethical issues and the human factor are becoming more and more important in protecting assets in the digital age, and that cyber security is a paradigm shift in this regard [1].