The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphi...The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.展开更多
The goal of this paper was to present knowledge on changes in the morphodynamic structure of the Ochotnica River(Polish Carpathians)and transformations within its active river zone since the end of the 19th century.Th...The goal of this paper was to present knowledge on changes in the morphodynamic structure of the Ochotnica River(Polish Carpathians)and transformations within its active river zone since the end of the 19th century.The study used a set of archival and contemporary cartographic materials and the results of three-fold field mapping of the morphodynamic structure of the riverbed.Direct and indirect human interference with the natural environment of the catchment and the fluvial system was taken into account in the analysis.Analysis of changes in the morphodynamic structure of the Ochotnica and its active river zone since the end of the 19th century indicated significant changes in the development trend of the riverbed.The contemporary structure of the Ochotnica is more complex than in the 1980s.There has been a fragmentation of the riverbed into sections with different morphodynamic sections.The proportion of erosive sections has increased,which explains the reduced in the width of the active river zone of the Ochotnica.The average width of the active river zone of the river between 1861 and 2022 has changed from 80 m to 18 m.Human impact has been identified as the main reason for the changes in the morphodynamic structure of the riverbed and its active river zone.Currently,only the unregulated sect ion is characterised by free lateral migration of the riverbed and the widest active river zone(~28 m).展开更多
In our recent investigations of diatom diversity,we studied three species,namely,Skeletonema costatum,Skeletonema subsalsum,and Skeletonema potamos.Although they have been found frequently in Changjiang(Yangtze)River ...In our recent investigations of diatom diversity,we studied three species,namely,Skeletonema costatum,Skeletonema subsalsum,and Skeletonema potamos.Although they have been found frequently in Changjiang(Yangtze)River Basin,their morphological and molecular identification is difficult in taxonomy.Therefore,to integrate morphological and molecular biological approaches,we compared systematically their morphological characters and performed phylogenetic analysis.Twelve strains of Skeletonema were collected and isolated from Shanghai and Jiangsu,China,and their morphological characteristics were examined by light microscopy(LM)and the scanning electron microscopy(SEM).Based on morphological comparison,we determined that S.potamos is easy to distinguish from the other two species.The heavily silicified areolae,undulated or cleft distal ends of terminal fultoportula processes(TFPPs),absence of basal pores of fultoportula processes(FPPs),the rootlike protrusions of FPPs,and no interlocking connection are the stable characteristics that can be used to identify S.potamos.However,there are only two features that can distinguish S.costatum from S.subsalsum,namely the location of terminal rimoportulae(TRPs)and the distal shape of TFPPs.In addition,we amplified and sequenced nine common genetic markers from the strains,from which 101 sequences were obtained,constructed phylogenetic trees based on the nine genes and evaluated that seven genes can be used to identify S.potamos,and revealed that S.subsalsum is the closest known relative of S.costatum,and only ATP synthetase beta-subunit gene(atp B)is able to distinguish them from each other,which strongly support that it is an effective molecular marker for Skeletonema.This work provided a theoretical basis for the taxonomic study of Skeletonema.展开更多
Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alte...Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River.展开更多
Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aime...Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins.展开更多
Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and ...Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.展开更多
Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this s...Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this study,based on 36 Landsat images,we extracted the glacier boundaries in the Manas River Basin,Northwest China from 2000 to 2020 using eCognition combined with band operation,GIS(geographic information system)spatial overlay techniques,and manual visual interpretation.We further analyzed the distribution and variation characteristics of glacier area,and simulated glacial runoff using a distributed degree-day model to explore the regulation of runoff recharge.The results showed that glacier area in the Manas River Basin as a whole showed a downward trend over the past 21 a,with a decrease of 10.86%and an average change rate of–0.54%/a.With the increase in glacier scale,the number of smaller glaciers decreased exponentially,and the number and area of larger glaciers were relatively stable.Glacier area showed a normal distribution trend of increasing first and then decreasing with elevation.About 97.92%of glaciers were distributed at 3700–4800 m,and 48.11%of glaciers were observed on the northern and northeastern slopes.The retreat rate of glaciers was the fastest(68.82%)at elevations below 3800 m.There was a clear rise in elevation at the end of glaciers.Glaciers at different slope directions showed a rapid melting trend from the western slope to the southern slope then to the northern slope.Glacial runoff in the basin showed a fluctuating upward trend in the past 21 a,with an increase rate of 0.03×10^(8) m^(3)/a.The average annual glacial runoff was 4.80×10^(8) m^(3),of which 33.31%was distributed in the ablation season(June–September).The average annual contribution rate of glacial meltwater to river runoff was 35.40%,and glacial runoff accounted for 45.37%of the total runoff during the ablation season.In addition,precipitation and glacial runoff had complementary regulation patterns for river runoff.The findings can provide a scientific basis for water resource management in the Manas River Basin and other similar arid inland river basins.展开更多
Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Lan...Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.展开更多
Climate change has profound implications for managing freshwater resources and species dependent on those resources. Water is an essential component of the life support system of the earth, and a basic resource for so...Climate change has profound implications for managing freshwater resources and species dependent on those resources. Water is an essential component of the life support system of the earth, and a basic resource for socio-economic development. The Great Ruaha River Catchment Area is a dynamic and complex ecosystem requiring inclusion climate change adaptation in the management of the freshwater and natural resources available to reduce the severity of climate change impacts. Rainfall has decreased considerably during the last 10 - 30 years, and characterised by high interannual variability, seasonal shifts and variable seasonal distribution with unpredictable onset and ending of rains and shortened growing seasons. Temperature has increased considerably during this period causing increased evapotranspiration losses and incidences of pest and diseases. The freshwater of Ruaha River and it tributaries are vulneable to changing climate, such as drought, which can negatively impact on the livelihoods of the people through de- creased crop and livestock production, and on local biodiversity. The changing climate has had negative impacts on, among other aspects, land use and water shortages for irrigation, livestock and domestic uses. This has compelled riparian communities in the catchment to devises coping strategies including practicing irrigation to provide supplementary water to crops, using drought tolerant crop varieties, rationing of irrigation water in farmlands, wetland cultivation, and diversification to non-agricultural activities. Despite the existence of many indicators used for local climate forecasting, there are limitations to local adaptation, including among others, poverty, institutional aspects and limited integration of climate adaptation in various sectors. The bulk of indigenous knowledge could be integrated into formal adaptation planning, and may be important components of environmental conservation at the local level.展开更多
Understanding the impact of climate change on water resources is important for developing regional adaptive water management strategies. This study investigated the impact of climate change on water resources in the Y...Understanding the impact of climate change on water resources is important for developing regional adaptive water management strategies. This study investigated the impact of climate change on water resources in the Yarmouk River Basin(YRB) of Jordan by analyzing the historical trends and future projections of temperature, precipitation, and streamflow. Simple linear regression was used to analyze temperature and precipitation trends from 1989 to 2017 at Irbid, Mafraq, and Samar stations. The Statistical Downscaling Model(SDSM) was applied to predict changes in temperature and precipitation from 2018 to 2100 under three Representative Concentration Pathway(RCP) scenarios(i.e., RCP2.6, RCP4.5, and RCP8.5), and the Soil and Water Assessment Tool(SWAT) was utilized to estimate their potential impact on streamflow at Addasiyia station. Analysis of data from 1989 to 2017 revealed that mean maximum and minimum temperatures increased at all stations, with average rises of 1.62℃ and 1.39℃, respectively. The precipitation trends varied across all stations, showing a significant increase at Mafraq station, an insignificant increase at Irbid station, and an insignificant decrease at Samar station. Historical analysis of streamflow data revealed a decreasing trend with a slope of –0.168. Significant increases in both mean minimum and mean maximum temperatures across all stations suggested that evaporation is the dominant process within the basin, leading to reduced streamflow. Under the RCP scenarios, projections indicated that mean maximum temperatures will increase by 0.32℃ to 1.52℃, while precipitation will decrease by 8.5% to 43.0% throughout the 21st century. Future streamflow projections indicated reductions in streamflow ranging from 8.7% to 84.8% over the same period. The mathematical model results showed a 39.4% reduction in streamflow by 2050, nearly double the SWAT model's estimate under RCP8.5 scenario. This research provides novel insights into the regional impact of climate change on water resources, emphasizing the urgent need to address these environmental challenges to ensure a sustainable water supply in Jordan.展开更多
The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the regio...The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.展开更多
Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and...Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB.展开更多
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role...Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers.展开更多
Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this...Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.展开更多
Intensification of agricultural land use and population growth from 1990-2017 has caused changes in land cover and land use of the Mbarali River sub-catchment which is located in the Upper Great Ruaha Sub basin, Tanza...Intensification of agricultural land use and population growth from 1990-2017 has caused changes in land cover and land use of the Mbarali River sub-catchment which is located in the Upper Great Ruaha Sub basin, Tanzania. This has affected the magnitude of the surface runoff, total water yield and the groundwater flow. This study assesses the impacts of the land cover and land use changes on the stream flows and hydrological water balance components (surface runoff, water yield, percolation and actual evapotranspiration). The land use and land cover (LULC) maps for three window period snapshots, 1990, 2006 and 2017 were created from Landsat TM and OLI_TIRS with the help of QGIS version 2.6. Supervised classification was used to generate LULC maps using the Maximum Likelihood Algorithm and Kappa statistics for assessment of accuracy. SWAT was set up and run to simulate stream flows and hydrological water balance components. The assessment of the impacts of land use and land cover changes on stream flows and hydrological water balance component was performed by comparing hydrological parameters simulated by SWAT using land use scenarios of 2006 and 2017 against the baseline land use scenario of 1990. Accuracy of LULC classification was good with Kappa statistics ranging between 0.9 and 0.99. There was a drastic increase in areal coverage of cultivated land, for periods 1990-2006 (5.84%) and 2006-2017 (12.05%) compared to other LULC. During 2006 and 2017 surface runoff increased by 4% and 9% respectively;however, water yield increased by only 0.5% compared to 1990 baseline period. This was attributed to increased proportion of cultivated land in the sub-catchment which has a high curve number (59.60) that indicates a higher runoff response and low infiltration rate.展开更多
Taking advantage of remote sensing(RS) technology and geographic information system(GIS) technology to interpret the four periods' data of remote sensing images of Pearl River Estuary in the years of 1990,1995,200...Taking advantage of remote sensing(RS) technology and geographic information system(GIS) technology to interpret the four periods' data of remote sensing images of Pearl River Estuary in the years of 1990,1995,2000,and 2005,the changes in land utilization and landscape layout of Pearl River Estuary have been analyzed with reference to land utilization dynamic model and quantitative method in landscape ecology.Results indicate several points as followings.①Located in the region typical of high-speed economic development,Pearl River Estuary shows noticeable changes in land types and evident spatial temporal difference.During these 15 years,the areas of cultivated land and forests have experienced dramatic decline while the land for construction purposes shows the trend of powerful increase.②On the prospect of variation,landscape metrics have indicated great differences among other landscape pattern indices except for Area-Weighted Mean Patch Fractal Dimension(AWMPFD) especially during the period from 1990 to 1995 which experiences the most obvious changes.③On the prospect of landscape,landscape pattern indices also indicate great changes in the landscape layout of Pearl River Estuary from 1990 to 2005 as well as noticeable increase in the number of patches,and various landscape pattern indices show the increase in the degree of regional landscape fragmentation and increase in diversity.展开更多
Multivariate analysis was adopted to analyze 30 morphometrical characteristics of 121 one-year-old juvenile silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) bred during the 1950s ...Multivariate analysis was adopted to analyze 30 morphometrical characteristics of 121 one-year-old juvenile silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) bred during the 1950s ("the former population") and 2008 ("the current population") and collected from the middle reach of the Yangtze River. The average discriminant accuracies of the former and current silver and bighead carp population were 94.2% and 98.0%, respectively. Discriminant analysis also revealed that significant differences in morphology occurred between the former and current populations of both carp in overall characteristics. One-way analysis of variance indicated that between former and current populations, silver carp showed highly significant differences (P0.01) in twelve of their characteristics and significant differences (P0.05) in eight of their characteristics, while bighead carp showed highly significant differences (P0.01) in eight of their characteristics and significant differences (P0.05) in eight of their characteristics. Six head morphology variables of the current silver and bighead carp were significantly or highly significantly larger than the former populations; fourteen characteristics of silver carp and ten characteristics of bighead carp of the current populations, mainly reflecting truck and tail morphology, were significantly or very significantly smaller than the former populations. Our results indicate that silver and bighead carp have developed a larger head and smaller truck and tail during the last 50 years. Due to such morphological changes, it seems apparent that the heads of these fish species need to be considered in regards to human diets, particularly in relation to economic and nutritious value.展开更多
[Objective] The aim was to quantitatively predict the variation trend of maize yield in Yellow River irrigation area of Ningxia under future climate change scenarios.[Method] Based on the data of daily temperature,pre...[Objective] The aim was to quantitatively predict the variation trend of maize yield in Yellow River irrigation area of Ningxia under future climate change scenarios.[Method] Based on the data of daily temperature,precipitation and radiation in 25 km × 25 km grid in Ningxia from 2010 to 2100 obtained by regional climate model,maize yield in Yellow River irrigation area of Ningxia in the 21st century was studied by means of corrected CERES-Maize model.[Result] With climate warming,maize yield in Yellow River irrigation area of Ningxia in 2020s and 2050s showed increase trend compared with base years(average in 1961-1990)when current adaptive maize variety and optimum production management measures were adopted,while maize yield went down in 2080s with the further increase of temperature.The grain number per spike and spike grain weight as the yield components of maize also showed the same trend with maize yield.In 2020s and 2050s,the increase of maize yield under B2 scenario was higher than that under A2 scenario,while the decrease of maize yield under B2 scenario was lower than that under A2 scenario in 2080s.[Conclusion] With the increase of temperature,maize yield in Yellow River irrigation area of Ningxia went up firstly and then went down.展开更多
[Objective] This study was to provide basis for the scientific management of land use in Haihe River Basin (HRB) through the quantitative exploration of the land use conversion, changes of intensity and spatial dist...[Objective] This study was to provide basis for the scientific management of land use in Haihe River Basin (HRB) through the quantitative exploration of the land use conversion, changes of intensity and spatial distribution in this region. [Method] With the support of remote sensing technology and geographic information technology, the land use maps of the study area in 40 years (1970-2010) were in- terpreted and plotted. Four kinds of tupu, namely, land use change tupu, process tupu, arising tupu and evolution mode tupu were built through the spatial overlay of the land use maps to analyze the change rules of land use patterns. [Result] The conversion of arable land to construction land was the main characteristics of land use changes in HRB for the 40 years; the area of non-stable region accounted for 35% of the total, indicating that the land use changed remarkably, thus, it was nec- essary to strengthen the scientific land management in HRB; the new conversions to all land use patterns were all the lowest in 1980-1990, indicating that land use changed slowly during this period. [Conclusion] The results indicate that, compared with conventional transfer matrix method, geo-information tupu has obvious advantage in analyzing land use changes that it can demonstrate the spatial distribution of interest region, display the multi-dimensional spatial information.展开更多
Based on 35 a meteorological data and main crops planting data in Shiyang River basin meteorological station,the agricultural climate change,agricultural production,hydrology change and the influences on the crops lay...Based on 35 a meteorological data and main crops planting data in Shiyang River basin meteorological station,the agricultural climate change,agricultural production,hydrology change and the influences on the crops layout,planting in the basin were discussed.The results showed that the linear inclined rates of ≥0 ℃,10 ℃ accumulated temperature increase in the north-central part were bigger than in the south,and the heat resources increased evidently.The annual precipitation increased in the linear inclined rate which was 4.719 mm/10 a,and the annual runoff decreased in 0.274×109 m3/10 a velocity.The climate productivity increased in 134.62 kg/(hm2·10 a) velocity.In late spring and early summer,the regional drought increased evidently,and the frostless period prolonged.The sand storm decreased evidently.The gale in the south increased and decreased in the north-central part.The agricultural climate change made that the spring wheat planting zone advanced to the high-altitude area.The seeding date advanced,and the growth period shortened.It didn't favor for the yield formation.However,it was favorable to improve the yield and quality of thermophilous crops such as the corn,cotton and wine grape and so on.展开更多
基金supported in part by the Key Laboratory of Natural Resources Monitoring and Supervision in Southern Hilly Region,Ministry of Natural Resources(NRMSSHR2023Y02)Yunnan Key Laboratory of Plateau Geographic Processes and Environmental Changes(PGPEC2304)+1 种基金Yunnan Normal University,China.This study was also sponsored by the Scientific Research Project of Education Department of Hubei Province(Grant No.B2022262)the Philosophy and Social Sciences Research Project of Education Department of Hubei Province(Grant No.22G024).
文摘The continuous decrease of low-slope cropland resources caused by construction land crowding poses huge threat to regional sustainable development and food security.Slope spectrum analysis of topographic and geomorphic features is considered as a digital terrain analysis method which reflects the macro-topographic features by using micro-topographic factors.However,pieces of studies have extended the concept of slope spectrum in the field of geoscience to construction land to explore its expansion law,while research on the slope trend of cropland from that perspective remains rare.To address the gap,in virtue of spatial analysis and geographically weighted regression(GWR)model,the cropland use change in the Yangtze River Basin(YRB)from 2000 to 2020 was analyzed and the driving factors were explored from the perspective of slope spectrum.Results showed that the slope spectrum curves of cropland area-frequency in the YRB showed a first upward then a downward trend.The change curve of the slope spectrum of cropland in each province(municipality)exhibited various distribution patterns.Quantitative analysis of morphological parameters of cropland slope spectrum revealed that the further down the YRB,the stronger the flattening characteristics,the more obvious the concentration.The province experienced the greatest downhill cropland climbing(CLC)was Shannxi,while province experienced the highest uphill CLC was Zhejiang.The most common cropland use change type in the YRB was horizontal expansion type.The factors affecting average cropland climbing index(ACCI)were quite stable in different periods,while population density(POP)changed from negative to positive during the study period.This research is of practical significance for the rational utilization of cropland at the watershed scale.
基金supported by a grant from the Faculty of Geography ang Geology under the Strategic Programme Excellence Initiative at Jagiellonian University.
文摘The goal of this paper was to present knowledge on changes in the morphodynamic structure of the Ochotnica River(Polish Carpathians)and transformations within its active river zone since the end of the 19th century.The study used a set of archival and contemporary cartographic materials and the results of three-fold field mapping of the morphodynamic structure of the riverbed.Direct and indirect human interference with the natural environment of the catchment and the fluvial system was taken into account in the analysis.Analysis of changes in the morphodynamic structure of the Ochotnica and its active river zone since the end of the 19th century indicated significant changes in the development trend of the riverbed.The contemporary structure of the Ochotnica is more complex than in the 1980s.There has been a fragmentation of the riverbed into sections with different morphodynamic sections.The proportion of erosive sections has increased,which explains the reduced in the width of the active river zone of the Ochotnica.The average width of the active river zone of the river between 1861 and 2022 has changed from 80 m to 18 m.Human impact has been identified as the main reason for the changes in the morphodynamic structure of the riverbed and its active river zone.Currently,only the unregulated sect ion is characterised by free lateral migration of the riverbed and the widest active river zone(~28 m).
基金Supported by the National Natural Science Foundation of China(No.32170205)the Natural Science Foundation of Shanghai(No.21ZR144730)。
文摘In our recent investigations of diatom diversity,we studied three species,namely,Skeletonema costatum,Skeletonema subsalsum,and Skeletonema potamos.Although they have been found frequently in Changjiang(Yangtze)River Basin,their morphological and molecular identification is difficult in taxonomy.Therefore,to integrate morphological and molecular biological approaches,we compared systematically their morphological characters and performed phylogenetic analysis.Twelve strains of Skeletonema were collected and isolated from Shanghai and Jiangsu,China,and their morphological characteristics were examined by light microscopy(LM)and the scanning electron microscopy(SEM).Based on morphological comparison,we determined that S.potamos is easy to distinguish from the other two species.The heavily silicified areolae,undulated or cleft distal ends of terminal fultoportula processes(TFPPs),absence of basal pores of fultoportula processes(FPPs),the rootlike protrusions of FPPs,and no interlocking connection are the stable characteristics that can be used to identify S.potamos.However,there are only two features that can distinguish S.costatum from S.subsalsum,namely the location of terminal rimoportulae(TRPs)and the distal shape of TFPPs.In addition,we amplified and sequenced nine common genetic markers from the strains,from which 101 sequences were obtained,constructed phylogenetic trees based on the nine genes and evaluated that seven genes can be used to identify S.potamos,and revealed that S.subsalsum is the closest known relative of S.costatum,and only ATP synthetase beta-subunit gene(atp B)is able to distinguish them from each other,which strongly support that it is an effective molecular marker for Skeletonema.This work provided a theoretical basis for the taxonomic study of Skeletonema.
基金supported by the Basic Research Project of Key Scientific Research Projects of Colleges and Universities of Henan Province,China(23ZX012).
文摘Analysing runoff changes and how these are affected by climate change and human activities is deemed crucial to elucidate the ecological and hydrological response mechanisms of rivers.The Indicators of Hydrologic Alteration and the Range of Variability Approach(IHA-RVA)method,as well as the ecological indicator method,were employed to quantitatively assess the degree of hydrologic change and ecological response processes in the Yellow River Basin from 1960 to 2020.Using Budyko's water heat coupling balance theory,the relative contributions of various driving factors(such as precipitation,potential evapotranspiration,and underlying surface)to runoff changes in the Yellow River Basin were quantitatively evaluated.The results show that the annual average runoff and precipitation in the Yellow River Basin had a downwards trend,whereas the potential evapotranspiration exhibited an upwards trend from 1960 to 2020.In approximately 1985,it was reported that the hydrological regime of the main stream underwent an abrupt change.The degree of hydrological change was observed to gradually increase from upstream to downstream,with a range of 34.00%-54.00%,all of which are moderate changes.However,significant differences have been noted among different ecological indicators,with a fluctuation index of 90.00%at the outlet of downstream hydrological stations,reaching a high level of change.After the mutation,the biodiversity index of flow in the middle and lower reaches of the Yellow River was generally lower than that in the base period.The research results also indicate that the driving factor for runoff changes in the upper reach of the Yellow River Basin is mainly precipitation,with a contribution rate of 39.31%-54.70%.Moreover,the driving factor for runoff changes in the middle and lower reaches is mainly human activities,having a contribution rate of 63.70%-84.37%.These results can serve as a basis to strengthen the protection and restoration efforts in the Yellow River Basin and further promote the rational development and use of water resources in the Yellow River.
基金National Natural Science Foundation of China(42230720).
文摘Understanding the response of vegetation variation to climate change and human activities is critical for addressing future conflicts between humans and the environment,and maintaining ecosystem stability.Here,we aimed to identify the determining factors of vegetation variation and explore the sensitivity of vegetation to temperature(SVT)and the sensitivity of vegetation to precipitation(SVP)in the Shiyang River Basin(SYRB)of China during 2001-2022.The climate data from climatic research unit(CRU),vegetation index data from Moderate Resolution Imaging Spectroradiometer(MODIS),and land use data from Landsat images were used to analyze the spatial-temporal changes in vegetation indices,climate,and land use in the SYRB and its sub-basins(i.e.,upstream,midstream,and downstream basins)during 2001-2022.Linear regression analysis and correlation analysis were used to explore the SVT and SVP,revealing the driving factors of vegetation variation.Significant increasing trends(P<0.05)were detected for the enhanced vegetation index(EVI)and normalized difference vegetation index(NDVI)in the SYRB during 2001-2022,with most regions(84%)experiencing significant variation in vegetation,and land use change was determined as the dominant factor of vegetation variation.Non-significant decreasing trends were detected in the SVT and SVP of the SYRB during 2001-2022.There were spatial differences in vegetation variation,SVT,and SVP.Although NDVI and EVI exhibited increasing trends in the upstream,midstream,and downstream basins,the change slope in the downstream basin was lower than those in the upstream and midstream basins,the SVT in the upstream basin was higher than those in the midstream and downstream basins,and the SVP in the downstream basin was lower than those in the upstream and midstream basins.Temperature and precipitation changes controlled vegetation variation in the upstream and midstream basins while human activities(land use change)dominated vegetation variation in the downstream basin.We concluded that there is a spatial heterogeneity in the response of vegetation variation to climate change and human activities across different sub-basins of the SYRB.These findings can enhance our understanding of the relationship among vegetation variation,climate change,and human activities,and provide a reference for addressing future conflicts between humans and the environment in the arid inland river basins.
基金supported by the Central Government to Guide Local Technological Development(23ZYQH0298)the Science and Technology Project of Gansu Province(20JR10RA656,22JR5RA416)the Science and Technology Project of Wuwei City(WW2202YFS006).
文摘Land use and cover change(LUCC)is the most direct manifestation of the interaction between anthropological activities and the natural environment on Earth's surface,with significant impacts on the environment and social economy.Rapid economic development and climate change have resulted in significant changes in land use and cover.The Shiyang River Basin,located in the eastern part of the Hexi Corridor in China,has undergone significant climate change and LUCC over the past few decades.In this study,we used the random forest classification to obtain the land use and cover datasets of the Shiyang River Basin in 1991,1995,2000,2005,2010,2015,and 2020 based on Landsat images.We validated the land use and cover data in 2015 from the random forest classification results(this study),the high-resolution dataset of annual global land cover from 2000 to 2015(AGLC-2000-2015),the global 30 m land cover classification with a fine classification system(GLC_FCS30),and the first Landsat-derived annual China Land Cover Dataset(CLCD)against ground-truth classification results to evaluate the accuracy of the classification results in this study.Furthermore,we explored and compared the spatiotemporal patterns of LUCC in the upper,middle,and lower reaches of the Shiyang River Basin over the past 30 years,and employed the random forest importance ranking method to analyze the influencing factors of LUCC based on natural(evapotranspiration,precipitation,temperature,and surface soil moisture)and anthropogenic(nighttime light,gross domestic product(GDP),and population)factors.The results indicated that the random forest classification results for land use and cover in the Shiyang River Basin in 2015 outperformed the AGLC-2000-2015,GLC_FCS30,and CLCD datasets in both overall and partial validations.Moreover,the classification results in this study exhibited a high level of agreement with the ground truth features.From 1991 to 2020,the area of bare land exhibited a decreasing trend,with changes primarily occurring in the middle and lower reaches of the basin.The area of grassland initially decreased and then increased,with changes occurring mainly in the upper and middle reaches of the basin.In contrast,the area of cropland initially increased and then decreased,with changes occurring in the middle and lower reaches.The LUCC was influenced by both natural and anthropogenic factors.Climatic factors and population contributed significantly to LUCC,and the importance values of evapotranspiration,precipitation,temperature,and population were 22.12%,32.41%,21.89%,and 19.65%,respectively.Moreover,policy interventions also played an important role.Land use and cover in the Shiyang River Basin exhibited fluctuating changes over the past 30 years,with the ecological environment improving in the last 10 years.This suggests that governance efforts in the study area have had some effects,and the government can continue to move in this direction in the future.The findings can provide crucial insights for related research and regional sustainable development in the Shiyang River Basin and other similar arid and semi-arid areas.
基金supported by the National Natural Science Foundation of China(52169005)the Support Plan for Innovation and Development of Key Industries in southern Xinjiang,China(2022DB024)the Corps Science and Technology Innovation Talents Program Project of China(2023CB008-08).
文摘Understanding the distribution and dynamics of glaciers is of great significance to the management and allocation of regional water resources and socio-economic development in arid regions of Northwest China.In this study,based on 36 Landsat images,we extracted the glacier boundaries in the Manas River Basin,Northwest China from 2000 to 2020 using eCognition combined with band operation,GIS(geographic information system)spatial overlay techniques,and manual visual interpretation.We further analyzed the distribution and variation characteristics of glacier area,and simulated glacial runoff using a distributed degree-day model to explore the regulation of runoff recharge.The results showed that glacier area in the Manas River Basin as a whole showed a downward trend over the past 21 a,with a decrease of 10.86%and an average change rate of–0.54%/a.With the increase in glacier scale,the number of smaller glaciers decreased exponentially,and the number and area of larger glaciers were relatively stable.Glacier area showed a normal distribution trend of increasing first and then decreasing with elevation.About 97.92%of glaciers were distributed at 3700–4800 m,and 48.11%of glaciers were observed on the northern and northeastern slopes.The retreat rate of glaciers was the fastest(68.82%)at elevations below 3800 m.There was a clear rise in elevation at the end of glaciers.Glaciers at different slope directions showed a rapid melting trend from the western slope to the southern slope then to the northern slope.Glacial runoff in the basin showed a fluctuating upward trend in the past 21 a,with an increase rate of 0.03×10^(8) m^(3)/a.The average annual glacial runoff was 4.80×10^(8) m^(3),of which 33.31%was distributed in the ablation season(June–September).The average annual contribution rate of glacial meltwater to river runoff was 35.40%,and glacial runoff accounted for 45.37%of the total runoff during the ablation season.In addition,precipitation and glacial runoff had complementary regulation patterns for river runoff.The findings can provide a scientific basis for water resource management in the Manas River Basin and other similar arid inland river basins.
文摘Land cover is an impression of natural cover on surface of earth such as bare soil, river, grass etc. and utilization of these natural covers for various human needs and purposes by mankind is defined as land use. Land cover identification, delineation and mapping is important for planning activities, resource management and global monitoring studies while baseline mapping and subsequent monitoring is done by application of land use to get timely information about quantity of land that has been used. The present study has been carried out in Dhund river watershed of Jaipur, Rajasthan which covers an area of about 1828 sq∙km. The minimum and maximum elevation of the area is found to be 214 m and 603 m respectively. Land use and land cover changes of three decades from 1991 to 2021 have been interpreted by using remotes sensing and GIS techniques. ArcGIS software (Arc map 10.2), SOI topographic map, Cartosat-1 DEM and satellite data of Landsat 5 and Landsat 8 have been used for interpretation of eleven classes. The study shows an increase in cultivated land, settlement, waterbody, open forest, plantation and mining due to urbanization because of increasing demands of food, shelter and water while a decrease in dense forest, river, open scrub, wasteland and uncultivated land has also been marked due to destruction of aforementioned by anthropogenic activities such as industrialization resulting in environmental degradation that leads to air, soil and water pollution.
文摘Climate change has profound implications for managing freshwater resources and species dependent on those resources. Water is an essential component of the life support system of the earth, and a basic resource for socio-economic development. The Great Ruaha River Catchment Area is a dynamic and complex ecosystem requiring inclusion climate change adaptation in the management of the freshwater and natural resources available to reduce the severity of climate change impacts. Rainfall has decreased considerably during the last 10 - 30 years, and characterised by high interannual variability, seasonal shifts and variable seasonal distribution with unpredictable onset and ending of rains and shortened growing seasons. Temperature has increased considerably during this period causing increased evapotranspiration losses and incidences of pest and diseases. The freshwater of Ruaha River and it tributaries are vulneable to changing climate, such as drought, which can negatively impact on the livelihoods of the people through de- creased crop and livestock production, and on local biodiversity. The changing climate has had negative impacts on, among other aspects, land use and water shortages for irrigation, livestock and domestic uses. This has compelled riparian communities in the catchment to devises coping strategies including practicing irrigation to provide supplementary water to crops, using drought tolerant crop varieties, rationing of irrigation water in farmlands, wetland cultivation, and diversification to non-agricultural activities. Despite the existence of many indicators used for local climate forecasting, there are limitations to local adaptation, including among others, poverty, institutional aspects and limited integration of climate adaptation in various sectors. The bulk of indigenous knowledge could be integrated into formal adaptation planning, and may be important components of environmental conservation at the local level.
文摘Understanding the impact of climate change on water resources is important for developing regional adaptive water management strategies. This study investigated the impact of climate change on water resources in the Yarmouk River Basin(YRB) of Jordan by analyzing the historical trends and future projections of temperature, precipitation, and streamflow. Simple linear regression was used to analyze temperature and precipitation trends from 1989 to 2017 at Irbid, Mafraq, and Samar stations. The Statistical Downscaling Model(SDSM) was applied to predict changes in temperature and precipitation from 2018 to 2100 under three Representative Concentration Pathway(RCP) scenarios(i.e., RCP2.6, RCP4.5, and RCP8.5), and the Soil and Water Assessment Tool(SWAT) was utilized to estimate their potential impact on streamflow at Addasiyia station. Analysis of data from 1989 to 2017 revealed that mean maximum and minimum temperatures increased at all stations, with average rises of 1.62℃ and 1.39℃, respectively. The precipitation trends varied across all stations, showing a significant increase at Mafraq station, an insignificant increase at Irbid station, and an insignificant decrease at Samar station. Historical analysis of streamflow data revealed a decreasing trend with a slope of –0.168. Significant increases in both mean minimum and mean maximum temperatures across all stations suggested that evaporation is the dominant process within the basin, leading to reduced streamflow. Under the RCP scenarios, projections indicated that mean maximum temperatures will increase by 0.32℃ to 1.52℃, while precipitation will decrease by 8.5% to 43.0% throughout the 21st century. Future streamflow projections indicated reductions in streamflow ranging from 8.7% to 84.8% over the same period. The mathematical model results showed a 39.4% reduction in streamflow by 2050, nearly double the SWAT model's estimate under RCP8.5 scenario. This research provides novel insights into the regional impact of climate change on water resources, emphasizing the urgent need to address these environmental challenges to ensure a sustainable water supply in Jordan.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41461011)。
文摘The Yellow River Delta(YRD), a critical economic zone along China's eastern coast, also functions as a vital ecological reserve in the lower Yellow River. Amidst rapid industrialization and urbanization, the region has witnessed significant land use/cover changes(LUCC), impacting ecosystem services(ES) and ecological security patterns(ESP). Investigating LUCC's effects on ES and ESP in the YRD is crucial for ecological security and sustainable development. This study utilized the PLUS model to simulate 2030 land use scenarios, including natural development(NDS), economic development(EDS), and ecological protection scenarios(EPS). Subsequently, the InVEST model and circuit theory were applied to assess ES and ESP under varying LUCC scenarios from 2010 to 2030. Findings indicate:(1) Notable LUCC from 2010 to 2030, marked by decreasing cropland and increasing construction land and water bodies.(2) From 2010 to 2020, improvements were observed in carbon storage,water yield, soil retention, and habitat quality, whereas 2020–2030 saw increases in water yield and soil retention but declines in habitat quality and carbon storage. Among the scenarios, EPS showed superior performance in all four ES.(3) Between 2010 and 2030, ecological sources, corridors, and pinchpoints expanded, displaying significant spatial heterogeneity. The EPS scenario yielded the most substantial increases in ecological sources,corridors, and pinchpoints, totaling 582.89 km^(2), 645.03 km^(2),and 64.43 km^(2), respectively. This study highlights the importance of EPS, offering insightful scientific guidance for the YRD's sustainable development.
基金partly funded by the National Key Research and Development Program of China(NK2023190801)the National Foreign Experts Program of China(G2023041024L)the Key Scientific Research Program of Shaanxi Provincial Education Department,China(21JT028)。
文摘Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB.
基金Under the auspices of the Yunnan Scientist Workstation on International River Research of Daming He(No.KXJGZS-2019-005)National Natural Science Foundation of China(No.42201040)+1 种基金National Key Research and Development Project of China(No.2016YFA0601601)China Postdoctoral Science Foundation(No.2023M733006)。
文摘Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers.
基金supported by the Innovation Projects for Overseas Returnees of Ningxia Hui Autonomous Region-Study on Multi-Scenario Land Use Optimization and Carbon Storage in the Ningxia Section of Yellow River Basin(202303)the National Natural Science Foundation of China(42067022,41761066)the Natural Science Foundation of Ningxia Hui Autonomous Region,China(2022AAC03024)。
文摘Regional sustainable development necessitates a holistic understanding of spatiotemporal variations in ecosystem carbon storage(ECS),particularly in ecologically sensitive areas with arid and semi-arid climate.In this study,we calculated the ECS in the Ningxia Section of Yellow River Basin,China from 1985 to 2020 using the Integrated Valuation of Ecosystem Services and Tradeoffs(InVEST)model based on land use data.We further predicted the spatial distribution of ECS in 2050 under four land use scenarios:natural development scenario(NDS),ecological protection scenario(EPS),cultivated land protection scenario(CPS),and urban development scenario(UDS)using the patch-generating land use simulation(PLUS)model,and quantified the influences of natural and human factors on the spatial differentiation of ECS using the geographical detector(Geodetector).Results showed that the total ECS of the study area initially increased from 1985 until reaching a peak at 402.36×10^(6) t in 2010,followed by a decreasing trend to 2050.The spatial distribution of ECS was characterized by high values in the eastern and southern parts of the study area,and low values in the western and northern parts.Between 1985 and 2020,land use changes occurred mainly through the expansion of cultivated land,woodland,and construction land at the expense of unused land.The total ECS in 2050 under different land use scenarios(ranked as EPS>CPS>NDS>UDS)would be lower than that in 2020.Nighttime light was the largest contributor to the spatial differentiation of ECS,with soil type and annual mean temperature being the major natural driving factors.Findings of this study could provide guidance on the ecological construction and high-quality development in arid and semi-arid areas.
文摘Intensification of agricultural land use and population growth from 1990-2017 has caused changes in land cover and land use of the Mbarali River sub-catchment which is located in the Upper Great Ruaha Sub basin, Tanzania. This has affected the magnitude of the surface runoff, total water yield and the groundwater flow. This study assesses the impacts of the land cover and land use changes on the stream flows and hydrological water balance components (surface runoff, water yield, percolation and actual evapotranspiration). The land use and land cover (LULC) maps for three window period snapshots, 1990, 2006 and 2017 were created from Landsat TM and OLI_TIRS with the help of QGIS version 2.6. Supervised classification was used to generate LULC maps using the Maximum Likelihood Algorithm and Kappa statistics for assessment of accuracy. SWAT was set up and run to simulate stream flows and hydrological water balance components. The assessment of the impacts of land use and land cover changes on stream flows and hydrological water balance component was performed by comparing hydrological parameters simulated by SWAT using land use scenarios of 2006 and 2017 against the baseline land use scenario of 1990. Accuracy of LULC classification was good with Kappa statistics ranging between 0.9 and 0.99. There was a drastic increase in areal coverage of cultivated land, for periods 1990-2006 (5.84%) and 2006-2017 (12.05%) compared to other LULC. During 2006 and 2017 surface runoff increased by 4% and 9% respectively;however, water yield increased by only 0.5% compared to 1990 baseline period. This was attributed to increased proportion of cultivated land in the sub-catchment which has a high curve number (59.60) that indicates a higher runoff response and low infiltration rate.
文摘Taking advantage of remote sensing(RS) technology and geographic information system(GIS) technology to interpret the four periods' data of remote sensing images of Pearl River Estuary in the years of 1990,1995,2000,and 2005,the changes in land utilization and landscape layout of Pearl River Estuary have been analyzed with reference to land utilization dynamic model and quantitative method in landscape ecology.Results indicate several points as followings.①Located in the region typical of high-speed economic development,Pearl River Estuary shows noticeable changes in land types and evident spatial temporal difference.During these 15 years,the areas of cultivated land and forests have experienced dramatic decline while the land for construction purposes shows the trend of powerful increase.②On the prospect of variation,landscape metrics have indicated great differences among other landscape pattern indices except for Area-Weighted Mean Patch Fractal Dimension(AWMPFD) especially during the period from 1990 to 1995 which experiences the most obvious changes.③On the prospect of landscape,landscape pattern indices also indicate great changes in the landscape layout of Pearl River Estuary from 1990 to 2005 as well as noticeable increase in the number of patches,and various landscape pattern indices show the increase in the degree of regional landscape fragmentation and increase in diversity.
基金National Natural Science Foundation of China (30630051)Aquaculture E-Institute of Shanghai Universities(03E009)Shanghai Leading Academic Discipline Project(S30701)
文摘Multivariate analysis was adopted to analyze 30 morphometrical characteristics of 121 one-year-old juvenile silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) bred during the 1950s ("the former population") and 2008 ("the current population") and collected from the middle reach of the Yangtze River. The average discriminant accuracies of the former and current silver and bighead carp population were 94.2% and 98.0%, respectively. Discriminant analysis also revealed that significant differences in morphology occurred between the former and current populations of both carp in overall characteristics. One-way analysis of variance indicated that between former and current populations, silver carp showed highly significant differences (P0.01) in twelve of their characteristics and significant differences (P0.05) in eight of their characteristics, while bighead carp showed highly significant differences (P0.01) in eight of their characteristics and significant differences (P0.05) in eight of their characteristics. Six head morphology variables of the current silver and bighead carp were significantly or highly significantly larger than the former populations; fourteen characteristics of silver carp and ten characteristics of bighead carp of the current populations, mainly reflecting truck and tail morphology, were significantly or very significantly smaller than the former populations. Our results indicate that silver and bighead carp have developed a larger head and smaller truck and tail during the last 50 years. Due to such morphological changes, it seems apparent that the heads of these fish species need to be considered in regards to human diets, particularly in relation to economic and nutritious value.
基金Supported by Project of Ministry of Science and Technology of China"Response of Ningxia Climate to Global Climate Change and Its Mechanism"(2004DIB3J121)Climate Change Project of China Meteorological Administration(CCSF2007-27)Climate Change Bilateral Cooperation Project of China and Britain(2001-BA611B-04-06-01)~~
文摘[Objective] The aim was to quantitatively predict the variation trend of maize yield in Yellow River irrigation area of Ningxia under future climate change scenarios.[Method] Based on the data of daily temperature,precipitation and radiation in 25 km × 25 km grid in Ningxia from 2010 to 2100 obtained by regional climate model,maize yield in Yellow River irrigation area of Ningxia in the 21st century was studied by means of corrected CERES-Maize model.[Result] With climate warming,maize yield in Yellow River irrigation area of Ningxia in 2020s and 2050s showed increase trend compared with base years(average in 1961-1990)when current adaptive maize variety and optimum production management measures were adopted,while maize yield went down in 2080s with the further increase of temperature.The grain number per spike and spike grain weight as the yield components of maize also showed the same trend with maize yield.In 2020s and 2050s,the increase of maize yield under B2 scenario was higher than that under A2 scenario,while the decrease of maize yield under B2 scenario was lower than that under A2 scenario in 2080s.[Conclusion] With the increase of temperature,maize yield in Yellow River irrigation area of Ningxia went up firstly and then went down.
基金Supported by the Key Technology R&D Program of Hebei Province (10277105D)the Funds of the Chinese Academy of Sciences for Key Topics in Innovation Engineering(KSCX-EW-J-5)~~
文摘[Objective] This study was to provide basis for the scientific management of land use in Haihe River Basin (HRB) through the quantitative exploration of the land use conversion, changes of intensity and spatial distribution in this region. [Method] With the support of remote sensing technology and geographic information technology, the land use maps of the study area in 40 years (1970-2010) were in- terpreted and plotted. Four kinds of tupu, namely, land use change tupu, process tupu, arising tupu and evolution mode tupu were built through the spatial overlay of the land use maps to analyze the change rules of land use patterns. [Result] The conversion of arable land to construction land was the main characteristics of land use changes in HRB for the 40 years; the area of non-stable region accounted for 35% of the total, indicating that the land use changed remarkably, thus, it was nec- essary to strengthen the scientific land management in HRB; the new conversions to all land use patterns were all the lowest in 1980-1990, indicating that land use changed slowly during this period. [Conclusion] The results indicate that, compared with conventional transfer matrix method, geo-information tupu has obvious advantage in analyzing land use changes that it can demonstrate the spatial distribution of interest region, display the multi-dimensional spatial information.
基金Supported by The Special Project of Public Welfare Industry(Meteorology) Science Research(GYHY200806021)
文摘Based on 35 a meteorological data and main crops planting data in Shiyang River basin meteorological station,the agricultural climate change,agricultural production,hydrology change and the influences on the crops layout,planting in the basin were discussed.The results showed that the linear inclined rates of ≥0 ℃,10 ℃ accumulated temperature increase in the north-central part were bigger than in the south,and the heat resources increased evidently.The annual precipitation increased in the linear inclined rate which was 4.719 mm/10 a,and the annual runoff decreased in 0.274×109 m3/10 a velocity.The climate productivity increased in 134.62 kg/(hm2·10 a) velocity.In late spring and early summer,the regional drought increased evidently,and the frostless period prolonged.The sand storm decreased evidently.The gale in the south increased and decreased in the north-central part.The agricultural climate change made that the spring wheat planting zone advanced to the high-altitude area.The seeding date advanced,and the growth period shortened.It didn't favor for the yield formation.However,it was favorable to improve the yield and quality of thermophilous crops such as the corn,cotton and wine grape and so on.