In this paper, the Klein-Gordon equation with equal scalar and vector Makaxov potentials is studied by the factorization method. The energy equation and the normalized bound state solutions are obtained, a recurrence ...In this paper, the Klein-Gordon equation with equal scalar and vector Makaxov potentials is studied by the factorization method. The energy equation and the normalized bound state solutions are obtained, a recurrence relation between the different principal quantum number n corresponding to a certain angular quantum number l is established and some special cases of Makarov potential axe discussed.展开更多
We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central osc...We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angulm" functions are expressed in terms of the hypergeometric functions. The radial eigenfunetions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein-Gordon equation is reduced to a first-order differential equation.展开更多
We solve the Klein-Cordon equation with a new anharmonic oscillator potential and present the exact solutions. It is shown that under the condition of equal scalar and vector potentials, the Klein-Cordon equation coul...We solve the Klein-Cordon equation with a new anharmonic oscillator potential and present the exact solutions. It is shown that under the condition of equal scalar and vector potentials, the Klein-Cordon equation could be separated into an angular equation and a radial equation. The angular solutions are the associated-Legendre polynomial and the radial solutions are expressed in terms of the confluent hypergeometric functions. Finally, the energy equation is obtained from the boundary condition satisfied by the radial wavefunctions.展开更多
This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ...This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.展开更多
In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with ...In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.展开更多
In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,t...In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.展开更多
The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,ratio...The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,rational solution,positon solution,and breather solution of the TOFGI equation are obtained by taking zero seed solution and non-zero seed solution.The exact solutions and dynamic properties of the Gerdjikov–Ivanov(GI)equation and the TOFGI equation are compared in detail under the same conditions,and it is found that there are some differences in the velocities and trajectories of the solutions of the two equations.展开更多
Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of l...Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.展开更多
In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infin...In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.展开更多
We study the Cauchy problem of strongly damped Klein-Gordon equation. Global existence and asymptotic behavior of solutions with initial data in the potential well are derived. Moreover, not only does finite time blow...We study the Cauchy problem of strongly damped Klein-Gordon equation. Global existence and asymptotic behavior of solutions with initial data in the potential well are derived. Moreover, not only does finite time blow up with initial data in the unstable set is proved, but also blow up results with arbitrary positive initial energy are obtained.展开更多
New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's pa...New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's parameters and travelling wave transformation parameters. Some figures for a specific kind of solution are also presented.展开更多
This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽...This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.展开更多
A Fourier spectral scheme is proposed for solving the periodic problem of nonlinear Klein-Gordon equation. Its stability and convergence are investigated. Numerical results are also presented.
In this paper, we present a cross-constrained variational method to study the Cauchy problem of the nonlinear Klein-Gordon equations with critical nonlinearity in two space dimensions. By constructing a type of cross-...In this paper, we present a cross-constrained variational method to study the Cauchy problem of the nonlinear Klein-Gordon equations with critical nonlinearity in two space dimensions. By constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we establish a sharp threshold of global existence and blowup of it. Furthermore, we answer the question: How small are the initial data if the solution exists globally.展开更多
In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve ...In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.展开更多
In this article, a general formula of the first integral method has been extended to celebrate the exact solution of nonlinear time-space differential equations of fractional orders. The proposed method is easy, direc...In this article, a general formula of the first integral method has been extended to celebrate the exact solution of nonlinear time-space differential equations of fractional orders. The proposed method is easy, direct and concise as compared with other existent methods.展开更多
In this paper, in order to extend the lattice Boltzmann method to deal with more nonlinear equations, a one-dimensional (1D) lattice Boltzmann scheme with an amending function for the nonlinear Klein-Gordon equation i...In this paper, in order to extend the lattice Boltzmann method to deal with more nonlinear equations, a one-dimensional (1D) lattice Boltzmann scheme with an amending function for the nonlinear Klein-Gordon equation is proposed. With the Taylor and Chapman-Enskog expansion, the nonlinear Klein-Gordon equation is recovered correctly from the lattice Boltzmann equation. The method is applied on some test examples, and the numerical results have been compared with the analytical solutions or the numerical solutions reported in previous studies. The L2, L∞ and Root-Mean-Square (RMS) errors in the solutions show the efficiency of the method computationally.展开更多
This paper extends the homotopy perturbation Sumudu transform method (HPSTM) to solve linear and nonlinear fractional Klein-Gordon equations. To illustrate the reliability of the method, some examples are presented. T...This paper extends the homotopy perturbation Sumudu transform method (HPSTM) to solve linear and nonlinear fractional Klein-Gordon equations. To illustrate the reliability of the method, some examples are presented. The convergence of the HPSTM solutions to the exact solutions is shown. As a novel application of homotopy perturbation sumudu transform method, the presented work showed some essential difference with existing similar application four classical examples also highlighted the significance of this work.展开更多
We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to de...We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.展开更多
文摘In this paper, the Klein-Gordon equation with equal scalar and vector Makaxov potentials is studied by the factorization method. The energy equation and the normalized bound state solutions are obtained, a recurrence relation between the different principal quantum number n corresponding to a certain angular quantum number l is established and some special cases of Makarov potential axe discussed.
文摘We present exact solutions for the Klein Gordon equation with a ring-shaped oscillator potential. The energy eigenvalues and the normalized wave functions are obtained for a particle in the presence of non-central oscillator potential. The angulm" functions are expressed in terms of the hypergeometric functions. The radial eigenfunetions have been obtained by using the Laplace integral transform. By means of the Laplace transform method, which is efficient and simple, the radial Klein-Gordon equation is reduced to a first-order differential equation.
文摘We solve the Klein-Cordon equation with a new anharmonic oscillator potential and present the exact solutions. It is shown that under the condition of equal scalar and vector potentials, the Klein-Cordon equation could be separated into an angular equation and a radial equation. The angular solutions are the associated-Legendre polynomial and the radial solutions are expressed in terms of the confluent hypergeometric functions. Finally, the energy equation is obtained from the boundary condition satisfied by the radial wavefunctions.
基金Supported by National Science Foundation of China(11971027,12171497)。
文摘This paper deals with quasilinear elliptic equations of singular growth like-Δu-uΔ(u^(2))=a(x)u^(-1).We establish the existence of positive solutions for general a(x)∈L^(p)(Ω),p>2,whereΩis a bounded domain inℝ^(N)with N≥1.
基金Supported by the National Natural Science Foundation of China(11671403,11671236,12101192)Henan Provincial General Natural Science Foundation Project(232300420113)。
文摘In this paper,we mainly focus on a type of nonlinear Choquard equations with nonconstant potential.Under appropriate hypotheses on potential function and nonlinear terms,we prove that the above Choquard equation with prescribed 2-norm has some normalized solutions by introducing variational methods.
基金Supported by Research Project Supported by Shanxi Scholarship Council of China(2021-029)International Cooperation Base and Platform Project of Shanxi Province(202104041101019)+2 种基金Basic Research Plan of Shanxi Province(202203021211129)Shanxi Province Natural Science Research(202203021212249)Special/Youth Foundation of Taiyuan University of Technology(2022QN101)。
文摘In this paper,we construct two fully decoupled,second-order semi-discrete numerical schemes for the Boussinesq equations based on the scalar auxiliary variable(SAV)approach.By introducing a scalar auxiliary variable,the original Boussinesq system is transformed into an equivalent one.Then we discretize it using the second-order backward di erentiation formula(BDF2)and Crank-Nicolson(CN)to obtain two second-order time-advanced schemes.In both numerical schemes,a pressure-correction method is employed to decouple the velocity and pressure.These two schemes possess the desired property that they can be fully decoupled with satisfying unconditional stability.We rigorously prove both the unconditional stability and unique solvability of the discrete schemes.Furthermore,we provide detailed implementations of the decoupling procedures.Finally,various 2D numerical simulations are performed to verify the accuracy and energy stability of the proposed schemes.
基金Project supported by the National Natural Science Foundation of China(Grant No.12201329)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY24A010002)the Natural Science Foundation of Ningbo(Grant No.2023J126)。
文摘The third-order flow Gerdjikov–Ivanov(TOFGI)equation is studied,and the Darboux transformation(DT)is used to obtain the determinant expression of the solution of this equation.On this basis,the soliton solution,rational solution,positon solution,and breather solution of the TOFGI equation are obtained by taking zero seed solution and non-zero seed solution.The exact solutions and dynamic properties of the Gerdjikov–Ivanov(GI)equation and the TOFGI equation are compared in detail under the same conditions,and it is found that there are some differences in the velocities and trajectories of the solutions of the two equations.
基金supported by The National Natural Science Foundation of China(Grant No.12362034)The Scientific Research Project of Inner Mongolia University of Technology(Grant Nos.DC2200000913+1 种基金DC2300001439)The Science and Technology Plan Project of Inner Mongolia Autonomous Region(Grant No.2022YFSH0047)。
文摘Loess-mudstone landslides are common in the Loess Plateau.Investigations into the mechanical theory of loess-mudstone landslides have become a challenging undertaking due to the distinctive interfacial properties of loess-mudstone and the unique water sensitivity characteristics of mudstone.Hence,it is imperative to develop innovative mechanical models and mathematical equations specifically tailored to loess-mudstone landslides.In this study,we analyze the fracture mechanism of the loess-mudstone sliding zone using plastic fracture mechanics and develop a unique fracture yield model.To calculate the energy release rate during the expansion of the loess-mudstone interface tip region,the shear fracture energy G is applied,which reflects both the yield failure criterion and the fracture failure criterion.To better understand the instability mechanism of loess-mudstone landslides,equilibrium equations based on G are established for tractive,compressive,and tensile loess-mudstone landslides.Based on the equilibrium equation,the critical length Lc of the sliding zone can be used for the safety evaluation of loess-mudstone landslides.In this way,this study proposes a new method for determining the failure mechanism and equilibrium equation of loessmudstone landslides,which resolves their starting mechanism,mechanical equilibrium equations,and safety evaluation indicators,thus justifying the scientific significance and practical value of this research.
文摘In this paper, we intend to consider a kind of nonlinear Klein-Gordon equation coupled with Born-Infeld theory. By using critical point theory and the method of Nehari manifold, we obtain two existing results of infinitely many high-energy radial solutions and a ground-state solution for this kind of system, which improve and generalize some related results in the literature.
基金supported by the National Natural Science Foundation of China (11101102)Ph.D. Programs Foundation of Ministry of Education of China (20102304120022)+3 种基金the Support Plan for the Young College Academic Backbone of Heilongjiang Province (1252G020)the Natural Science Foundation of Heilongjiang Province (A201014)Science and Technology Research Project of Department of Education of Heilongjiang Province (12521401)Foundational Science Foundation of Harbin Engineering University and Fundamental Research Funds for the Central Universities (HEUCF20131101)
文摘We study the Cauchy problem of strongly damped Klein-Gordon equation. Global existence and asymptotic behavior of solutions with initial data in the potential well are derived. Moreover, not only does finite time blow up with initial data in the unstable set is proved, but also blow up results with arbitrary positive initial energy are obtained.
文摘New exact solutions, expressed in terms of the Jacobi elliptic functions, to the nonlinear Klein-Gordon equation are obtained by using a modified mapping method. The solutions include the conditions for equation's parameters and travelling wave transformation parameters. Some figures for a specific kind of solution are also presented.
基金supported by the National Natural Science Foundation of China(12271296,12271195).
文摘This paper is a continuation of recent work by Guo-Xiang-Zheng[10].We deduce the sharp Morrey regularity theory for weak solutions to the fourth order nonhomogeneous Lamm-Rivière equation △^{2}u=△(V▽u)+div(w▽u)+(▽ω+F)·▽u+f in B^(4),under the smallest regularity assumptions of V,ω,ω,F,where f belongs to some Morrey spaces.This work was motivated by many geometrical problems such as the flow of biharmonic mappings.Our results deepens the Lp type regularity theory of[10],and generalizes the work of Du,Kang and Wang[4]on a second order problem to our fourth order problems.
文摘A Fourier spectral scheme is proposed for solving the periodic problem of nonlinear Klein-Gordon equation. Its stability and convergence are investigated. Numerical results are also presented.
基金Supported by the National Natural Science Foundation of China(No.10771151,10801102,10726034)Sichuan Youth Sciences and Technology Foundation(07ZQ026-009)China Postdoctoral Science Foundation Funded Project.
文摘In this paper, we present a cross-constrained variational method to study the Cauchy problem of the nonlinear Klein-Gordon equations with critical nonlinearity in two space dimensions. By constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we establish a sharp threshold of global existence and blowup of it. Furthermore, we answer the question: How small are the initial data if the solution exists globally.
基金supported in part by NSF of China N.10871131The Science and Technology Commission of Shanghai Municipality,Grant N.075105118+1 种基金Shanghai Leading Academic Discipline Project N.T0401Fund for E-institute of Shanghai Universities N.E03004.
文摘In this paper,a generalized Laguerre-spherical harmonic spectral method is proposed for the Cauchy problem of three-dimensional nonlinear Klein-Gordon equation. The goal is to make the numerical solutions to preserve the same conservation as that for the exact solution.The stability and convergence of the proposed scheme are proved.Numerical results demonstrate the efficiency of this approach.We also establish some basic results on the generalized Laguerre-spherical harmonic orthogonal approximation,which play an important role in spectral methods for various problems defined on the whole space and unbounded domains with spherical geometry.
文摘In this article, a general formula of the first integral method has been extended to celebrate the exact solution of nonlinear time-space differential equations of fractional orders. The proposed method is easy, direct and concise as compared with other existent methods.
文摘In this paper, in order to extend the lattice Boltzmann method to deal with more nonlinear equations, a one-dimensional (1D) lattice Boltzmann scheme with an amending function for the nonlinear Klein-Gordon equation is proposed. With the Taylor and Chapman-Enskog expansion, the nonlinear Klein-Gordon equation is recovered correctly from the lattice Boltzmann equation. The method is applied on some test examples, and the numerical results have been compared with the analytical solutions or the numerical solutions reported in previous studies. The L2, L∞ and Root-Mean-Square (RMS) errors in the solutions show the efficiency of the method computationally.
文摘This paper extends the homotopy perturbation Sumudu transform method (HPSTM) to solve linear and nonlinear fractional Klein-Gordon equations. To illustrate the reliability of the method, some examples are presented. The convergence of the HPSTM solutions to the exact solutions is shown. As a novel application of homotopy perturbation sumudu transform method, the presented work showed some essential difference with existing similar application four classical examples also highlighted the significance of this work.
文摘We consider a generalized form of the porous medium equation where the porosity ϕis a function of time t: ϕ=ϕ(x,t): ∂(ϕS)∂t−∇⋅(k(S)∇S)=Q(S).In many works, the porosity ϕis either assumed to be independent of (or to depend very little of) the time variable t. In this work, we want to study the case where it does depend on t(and xas well). For this purpose, we make a change of unknown function V=ϕSin order to obtain a saturation-like (advection-diffusion) equation. A priori estimates and regularity results are established for the new equation based in part on what is known from the saturation equation, when ϕis independent of the time t. These results are then extended to the full saturation equation with time-dependent porosity ϕ=ϕ(x,t). In this analysis, we make explicitly the dependence of the various constants in the estimates on the porosity ϕby the introduced transport vector w, through the change of unknown function. Also we do not assume zero-flux boundary, but we carry the analysis for the case Q≡0.