It is our great pleasure to put up this special issue in Journal of Control Theory and Applications in honor of the 60th birthday of Professor Frank Lewis, who has made many significant contributions to the field of c...It is our great pleasure to put up this special issue in Journal of Control Theory and Applications in honor of the 60th birthday of Professor Frank Lewis, who has made many significant contributions to the field of control engineering through the years, and who is regarded as a pioneer in many areas in control and automation, which includes applied optimal control and geometric systems theory in his earlier research period, and his recent focus on intelligent nonlinear control,展开更多
Boron-nitrogen-hydrogen compounds have been investigated and developed very fast in last decades caused by its excellent hydrogen-storage performances. The bottleneck problem hindering its application is the irreversi...Boron-nitrogen-hydrogen compounds have been investigated and developed very fast in last decades caused by its excellent hydrogen-storage performances. The bottleneck problem hindering its application is the irreversibility after its dehydrogenation. However, the traditional B-N(or B-P) bond can be hindered by connecting with large steric hindrances, which results in the possible reversible hydrogenationdehydrogenation properties. In this research, we analyse the structural characters based on the experiments to obtain the required electronic structure properties for realizing the reversibility of FLPs in the hydrogenation(or dehydrogenation).展开更多
Typically, a Lewis acid and a Lewis base can react with each other and form a classical Lewis adduct. The neutralization reaction can however be prevented by ligating the acid and base with bulky substituents and the ...Typically, a Lewis acid and a Lewis base can react with each other and form a classical Lewis adduct. The neutralization reaction can however be prevented by ligating the acid and base with bulky substituents and the resulting complex is known as a "frustrated Lewis pair"(FLP). Since the Lewis acid and base reactivity remains in the formed complex, FLPs can display interesting chemical activities, with promising applications in catalysis. For example, FLPs were shown to function as the first metal-free catalyst for molecular hydrogen activation. This, and other recent applications of FLPs, have opened a new thriving research field. In this short-review, we recapitulate the computational and experimental studies of the H_2 activation by FLPs. We discuss the thus-far uncovered mechanistic aspects, including pre-organization of FLPs,the reaction paths for the activation, the polarization of He H bond and other factors affecting the reactivity. We aim to provide a rather complete mechanistic picture of the H_2 activation by FLPs, which has been under debate for decades since the first discovery of FLPs. This review is meant as a starting point for future studies and a guideline for industrial applications.展开更多
In this study,a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen(B,N)was successfully synthesized.By precisely controlling the carbonization temperature of a binary mixed ionic liquid,we selec...In this study,a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen(B,N)was successfully synthesized.By precisely controlling the carbonization temperature of a binary mixed ionic liquid,we selectively modified the doping site structure,ultimately constructing a B,N co-doped frustrated Lewis acid-base pair catalyst.This catalyst exhibited remarkable catalytic activity,selectivity,and stability in the dehydrochlorination reaction of 1,1,2-trichloroethane(TCE).Detailed characterization and theoretical calculations revealed that the primary active center of this catalyst was the BN_(3)configuration.Compared to conventional graphitic N structures,the BN_(3)structure had a higher p-band center,ensuring superior adsorption and activation capabilities for TCE during the reaction.Within the BN_(3)site,three negatively charged nitrogen atoms acted as Lewis bases,while positively charged boron atoms acted as Lewis acids.This synergistic interaction facilitated the specific dissociation of chlorine and hydrogen atoms from TCE,significantly enhancing the 1,1-dichloroethene selectivity.Through this research,we not only explored the active site structure and catalytic mechanism of B,N co-doped catalysts in depth but also provided an efficient,selective,and stable catalyst for the dehydrochlorination of TCE,contributing significantly to the development of non-metallic catalysts.展开更多
Electrochemical NO_(2)~--to-NH_(3) conversion(NO_(2)RR) offers a green route to NH_(3) electrosynthesis, while developing efficient NO_(2)RR catalysis systems at high current densities remains a grand challenge. Herei...Electrochemical NO_(2)~--to-NH_(3) conversion(NO_(2)RR) offers a green route to NH_(3) electrosynthesis, while developing efficient NO_(2)RR catalysis systems at high current densities remains a grand challenge. Herein, we report an efficient Zr-NiO catalyst with atomically dispersed Zr-dopants incorporated in NiO lattice, delivering the exceptional NO_(2)RR performance with industriallevel current density(>0.2 A cm^(-2)). In situ spectroscopic measurements and theoretical simulations reveal the construction of ZrNi frustrated Lewis acid-base pairs(FLPs) on Zr-Ni O, which can substantially increase the number of absorbed nitrite(NO_(2)~-),promote the activation and protonation of NO_(2)~- and concurrently hamper the H coverage, boosting the activity and selectivity of Zr-NiO towards the NO_(2)RR. Remarkably, Zr-NiO exhibits the exceptional performance in a flow cell with high Faradaic efficiency for NH_(3) of 94.0% and NH_(3)yield rate of 1,394.1 μmol h^(-1)cm^(-2) at an industrial-level current density of 228.2 m A cm^(-2),placing it among the best NO_(2)RR electrocatalysts for NH_(3) production.展开更多
The saline and buffered environment in actual wastewater imposes higher demands on Fenton and Fenton-like catalytic systems.This study developed a MoS_(2)co-catalytic Fe_(2)O_(3)Fenton-like system with controllable Le...The saline and buffered environment in actual wastewater imposes higher demands on Fenton and Fenton-like catalytic systems.This study developed a MoS_(2)co-catalytic Fe_(2)O_(3)Fenton-like system with controllable Lewis acid-base sites,achieving efficient treatment of various model pollutants and actual industrial wastewater under neutral buffered environment.The acidic microenvironment structured by the edge S sites(Lewis basic sites)in the MoS_(2)/Fe_(2)O_(3)catalyst is susceptible to the influence of Lewis acidic sites constructed by Mo and Fe element,affecting catalytic performance.Optimizing the ratio of precursor amounts ensures the stable presence of the acidic microenvironment on the surface of catalyst,enabling the beneficial co-catalytic effect of Mo sites to be realized.Furthermore,it transcends the rigid constraints imposed by the Fenton reaction on reaction environments,thereby expanding the applicability of commonplace oxides such as Fe_(2)O_(3)in actual industrial water remediation.展开更多
Surface Lewis acid-base sites in crystal structure may influence the physicochemical properties and the catalytic performances in nanozymes.Understanding the synergistic effect mechanism of Co_(3)O_(4)nanozymes toward...Surface Lewis acid-base sites in crystal structure may influence the physicochemical properties and the catalytic performances in nanozymes.Understanding the synergistic effect mechanism of Co_(3)O_(4)nanozymes towards substances(3,3’,5,5’-tetramethylbenzidine(TMB)and hydrogen peroxide(H2O2))induced by surface Lewis acid-base sites is important to enhance the efficiency for peroxidase-like reaction.Herein,ultrathin porous Co_(3)O_(4)nanosheets with abundant Lewis acid-base sites were prepared by sodium borohydride(NaBH4)reduction treatment,which exhibited high-efficiency peroxidase-like activity compared with original Co_(3)O_(4)nanosheets.The Lewis acid-base sites for ultrathin porous Co_(3)O_(4)nanosheets nanozyme were owing to the coordination unsaturation of Co ions and the formation of defect structure.Ultrathin porous Co_(3)O_(4)nanosheets had 18.26-fold higher catalytic efficiency(1.27×10^(-2)s^(-1)·mM^(-1))than that of original Co_(3)O_(4)(6.95×10^(-4)s^(-1)·mM^(-1))in oxidizing TMB substrate.The synergistic effect of surface acid and base sites can enhance the interfacial electron transfer process of Co_(3)O_(4)nanosheets,which can be a favor of absorption substrates and the generation of reactive intermediates such as radicals.Furthermore,the limit of detection of hydroquinol was 0.58μM for ultrathin porous Co_(3)O_(4)nanosheets,965-fold lower than original Co_(3)O_(4)(560μM).Besides,the linear range of ultrathin porous Co_(3)O_(4)nanosheets was widely with the concentration of 5.0-1,000μM.Colorimetric detection of hydroquinol by agarose-based hydrogel membrane was provided based on excellent peroxidase-like properties.This study provided insights into designing high-performance nanozymes for peroxidase-like catalysis via a strategy of solid surface acid-base sites engineering.展开更多
Ethanol is a considerable platform molecule in biomass conversion,which could be acquired in quantity through acetone-butanol-ethanol(ABE)fermentation.People have been working on the upgrading of ethanol to value adde...Ethanol is a considerable platform molecule in biomass conversion,which could be acquired in quantity through acetone-butanol-ethanol(ABE)fermentation.People have been working on the upgrading of ethanol to value added chemicals for decades.In the meantime,1-butanol and a series of value added products have been selectively generated through C–C bond coupling.In this mini-review,we focus on the recent advances in selective C–C bond formation over balanced Lewis acid-base catalysts such as modified metal oxide,mixed metal oxide,hydroxyapatite and zeolite confined transition metal oxide catalysts.Among them,Pd-MgAlO_x and Sr-based hydroxyapatite exhibit>70%1-butanol selectivity,while Zn——xZr_yO_z and Ta-Si BEA zeolite achieve>80%of isobutene and butadiene selectivity respectively.The mechanism and reaction pathway of C–C bond formation in each reaction system are described in detail.The correlation between C–C bond coupling and the acidity/basicity of the Lewis acid-base pairs from the surface of the catalysts are also discussed.展开更多
It remains a significant challenge to develop a catalyst that merges the advantages of homogeneous and heterogeneous catalysis with high reactivity and great recyclability.Herein,an atomically precise Cu_(6)-NH_(2) na...It remains a significant challenge to develop a catalyst that merges the advantages of homogeneous and heterogeneous catalysis with high reactivity and great recyclability.Herein,an atomically precise Cu_(6)-NH_(2) nanocluster with distorted octahedral Cu_(6) core and NH_(2)-functionalized ligands has been developed as the first homo/heterogeneous catalyst to catalyze the cyclization reaction of propargylic amines with carbon dioxide(CO_(2))under mild conditions.As a homogeneous catalyst,Cu_(6)-NH_(2) shows excellent catalytic activity with high turnover frequency due to highly accessible active sites.The definite coordination geometry and homogeneity nature of active centers make it convenient to investigate the structure–activity relationship at the atomic level through experiments and theory calculations.In addition,the nanocluster exhibits excellent stability,great recrystallizability,and reusability in five catalytic cycles,in which its catalytic performance has no obvious decrease.Moreover,Cu_(6)-NH_(2) incorporates Lewis acid and base sites in metal and ligand,respectively,which can promote catalytic efficiency in a synergistic effect in the absence of any cocatalysts.Importantly,Cu_(6)-NH_(2) can realize direct conversion of CO_(2) in simulated flue gas into oxazolidinones with high efficiency.The metal-ligand cooperative effect and integrated advantages of homogeneous and heterogeneous catalysis would provide new perspectives to achieve advanced metal nanocluster catalysts for CO_(2) conversion.展开更多
文摘It is our great pleasure to put up this special issue in Journal of Control Theory and Applications in honor of the 60th birthday of Professor Frank Lewis, who has made many significant contributions to the field of control engineering through the years, and who is regarded as a pioneer in many areas in control and automation, which includes applied optimal control and geometric systems theory in his earlier research period, and his recent focus on intelligent nonlinear control,
基金supported by the National Key Research and Development Program of China(2017YFA0204600)National Natural Science Foundation of China(NSFC 21701001,51625102)+1 种基金Anhui Provincial Natural Science Foundation(1708085QB42)China Postdoctoral Science Foundation(2018M632013)
文摘Boron-nitrogen-hydrogen compounds have been investigated and developed very fast in last decades caused by its excellent hydrogen-storage performances. The bottleneck problem hindering its application is the irreversibility after its dehydrogenation. However, the traditional B-N(or B-P) bond can be hindered by connecting with large steric hindrances, which results in the possible reversible hydrogenationdehydrogenation properties. In this research, we analyse the structural characters based on the experiments to obtain the required electronic structure properties for realizing the reversibility of FLPs in the hydrogenation(or dehydrogenation).
文摘Typically, a Lewis acid and a Lewis base can react with each other and form a classical Lewis adduct. The neutralization reaction can however be prevented by ligating the acid and base with bulky substituents and the resulting complex is known as a "frustrated Lewis pair"(FLP). Since the Lewis acid and base reactivity remains in the formed complex, FLPs can display interesting chemical activities, with promising applications in catalysis. For example, FLPs were shown to function as the first metal-free catalyst for molecular hydrogen activation. This, and other recent applications of FLPs, have opened a new thriving research field. In this short-review, we recapitulate the computational and experimental studies of the H_2 activation by FLPs. We discuss the thus-far uncovered mechanistic aspects, including pre-organization of FLPs,the reaction paths for the activation, the polarization of He H bond and other factors affecting the reactivity. We aim to provide a rather complete mechanistic picture of the H_2 activation by FLPs, which has been under debate for decades since the first discovery of FLPs. This review is meant as a starting point for future studies and a guideline for industrial applications.
基金the funding support from the National Natural Science Foundation of China(Nos.22202036 and 22302001)the Jilin Province Scientific,the Technological Planning Project of China(No.20230101292JC).
文摘In this study,a novel non-metallic carbon-based catalyst co-doped with boron and nitrogen(B,N)was successfully synthesized.By precisely controlling the carbonization temperature of a binary mixed ionic liquid,we selectively modified the doping site structure,ultimately constructing a B,N co-doped frustrated Lewis acid-base pair catalyst.This catalyst exhibited remarkable catalytic activity,selectivity,and stability in the dehydrochlorination reaction of 1,1,2-trichloroethane(TCE).Detailed characterization and theoretical calculations revealed that the primary active center of this catalyst was the BN_(3)configuration.Compared to conventional graphitic N structures,the BN_(3)structure had a higher p-band center,ensuring superior adsorption and activation capabilities for TCE during the reaction.Within the BN_(3)site,three negatively charged nitrogen atoms acted as Lewis bases,while positively charged boron atoms acted as Lewis acids.This synergistic interaction facilitated the specific dissociation of chlorine and hydrogen atoms from TCE,significantly enhancing the 1,1-dichloroethene selectivity.Through this research,we not only explored the active site structure and catalytic mechanism of B,N co-doped catalysts in depth but also provided an efficient,selective,and stable catalyst for the dehydrochlorination of TCE,contributing significantly to the development of non-metallic catalysts.
基金supported by the National Natural Science Foundation of China (52161025)the Natural Science Foundation of Gansu Province (20JR10RA241)。
文摘Electrochemical NO_(2)~--to-NH_(3) conversion(NO_(2)RR) offers a green route to NH_(3) electrosynthesis, while developing efficient NO_(2)RR catalysis systems at high current densities remains a grand challenge. Herein, we report an efficient Zr-NiO catalyst with atomically dispersed Zr-dopants incorporated in NiO lattice, delivering the exceptional NO_(2)RR performance with industriallevel current density(>0.2 A cm^(-2)). In situ spectroscopic measurements and theoretical simulations reveal the construction of ZrNi frustrated Lewis acid-base pairs(FLPs) on Zr-Ni O, which can substantially increase the number of absorbed nitrite(NO_(2)~-),promote the activation and protonation of NO_(2)~- and concurrently hamper the H coverage, boosting the activity and selectivity of Zr-NiO towards the NO_(2)RR. Remarkably, Zr-NiO exhibits the exceptional performance in a flow cell with high Faradaic efficiency for NH_(3) of 94.0% and NH_(3)yield rate of 1,394.1 μmol h^(-1)cm^(-2) at an industrial-level current density of 228.2 m A cm^(-2),placing it among the best NO_(2)RR electrocatalysts for NH_(3) production.
基金supported by the National Natural Science Foundation of China(Nos.22176060 and 41876189)the Program of Shanghai Academic/Technology Research Leader(23XD1421000)+3 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX03)the Program of Introducing Talents of Discipline to Universities(B16017)Science and Technology Commission of Shanghai Municipality(20DZ2250400)the Fundamental Research Funds for the Central Universities(222201717003)。
文摘The saline and buffered environment in actual wastewater imposes higher demands on Fenton and Fenton-like catalytic systems.This study developed a MoS_(2)co-catalytic Fe_(2)O_(3)Fenton-like system with controllable Lewis acid-base sites,achieving efficient treatment of various model pollutants and actual industrial wastewater under neutral buffered environment.The acidic microenvironment structured by the edge S sites(Lewis basic sites)in the MoS_(2)/Fe_(2)O_(3)catalyst is susceptible to the influence of Lewis acidic sites constructed by Mo and Fe element,affecting catalytic performance.Optimizing the ratio of precursor amounts ensures the stable presence of the acidic microenvironment on the surface of catalyst,enabling the beneficial co-catalytic effect of Mo sites to be realized.Furthermore,it transcends the rigid constraints imposed by the Fenton reaction on reaction environments,thereby expanding the applicability of commonplace oxides such as Fe_(2)O_(3)in actual industrial water remediation.
基金This work was supported by the National Natural Science Foundation of China(No.21876099)Shandong Provincial Natural Science Foundation(No.ZR2017PB007)Shandong Provincial Key Laboratory Project of Test Technology for Material Chemical Safety(No.2018SDCLHX005).
文摘Surface Lewis acid-base sites in crystal structure may influence the physicochemical properties and the catalytic performances in nanozymes.Understanding the synergistic effect mechanism of Co_(3)O_(4)nanozymes towards substances(3,3’,5,5’-tetramethylbenzidine(TMB)and hydrogen peroxide(H2O2))induced by surface Lewis acid-base sites is important to enhance the efficiency for peroxidase-like reaction.Herein,ultrathin porous Co_(3)O_(4)nanosheets with abundant Lewis acid-base sites were prepared by sodium borohydride(NaBH4)reduction treatment,which exhibited high-efficiency peroxidase-like activity compared with original Co_(3)O_(4)nanosheets.The Lewis acid-base sites for ultrathin porous Co_(3)O_(4)nanosheets nanozyme were owing to the coordination unsaturation of Co ions and the formation of defect structure.Ultrathin porous Co_(3)O_(4)nanosheets had 18.26-fold higher catalytic efficiency(1.27×10^(-2)s^(-1)·mM^(-1))than that of original Co_(3)O_(4)(6.95×10^(-4)s^(-1)·mM^(-1))in oxidizing TMB substrate.The synergistic effect of surface acid and base sites can enhance the interfacial electron transfer process of Co_(3)O_(4)nanosheets,which can be a favor of absorption substrates and the generation of reactive intermediates such as radicals.Furthermore,the limit of detection of hydroquinol was 0.58μM for ultrathin porous Co_(3)O_(4)nanosheets,965-fold lower than original Co_(3)O_(4)(560μM).Besides,the linear range of ultrathin porous Co_(3)O_(4)nanosheets was widely with the concentration of 5.0-1,000μM.Colorimetric detection of hydroquinol by agarose-based hydrogel membrane was provided based on excellent peroxidase-like properties.This study provided insights into designing high-performance nanozymes for peroxidase-like catalysis via a strategy of solid surface acid-base sites engineering.
基金supported by the “111 Project” of China (B18030) and Nankai University
文摘Ethanol is a considerable platform molecule in biomass conversion,which could be acquired in quantity through acetone-butanol-ethanol(ABE)fermentation.People have been working on the upgrading of ethanol to value added chemicals for decades.In the meantime,1-butanol and a series of value added products have been selectively generated through C–C bond coupling.In this mini-review,we focus on the recent advances in selective C–C bond formation over balanced Lewis acid-base catalysts such as modified metal oxide,mixed metal oxide,hydroxyapatite and zeolite confined transition metal oxide catalysts.Among them,Pd-MgAlO_x and Sr-based hydroxyapatite exhibit>70%1-butanol selectivity,while Zn——xZr_yO_z and Ta-Si BEA zeolite achieve>80%of isobutene and butadiene selectivity respectively.The mechanism and reaction pathway of C–C bond formation in each reaction system are described in detail.The correlation between C–C bond coupling and the acidity/basicity of the Lewis acid-base pairs from the surface of the catalysts are also discussed.
基金financially supported by the National Natural Science Foundation of China(grant nos.92061201,21825106,21771163,and 22371263)the National Key R&D Program of China(grant no.2021YFA1200301)+1 种基金the Natural Science Foundation of Henan Province(grant no.232300421144)the Zhongyuan Thousand Talents(Zhongyuan Scholars)Program of Henan Province(grant no.234000510007).
文摘It remains a significant challenge to develop a catalyst that merges the advantages of homogeneous and heterogeneous catalysis with high reactivity and great recyclability.Herein,an atomically precise Cu_(6)-NH_(2) nanocluster with distorted octahedral Cu_(6) core and NH_(2)-functionalized ligands has been developed as the first homo/heterogeneous catalyst to catalyze the cyclization reaction of propargylic amines with carbon dioxide(CO_(2))under mild conditions.As a homogeneous catalyst,Cu_(6)-NH_(2) shows excellent catalytic activity with high turnover frequency due to highly accessible active sites.The definite coordination geometry and homogeneity nature of active centers make it convenient to investigate the structure–activity relationship at the atomic level through experiments and theory calculations.In addition,the nanocluster exhibits excellent stability,great recrystallizability,and reusability in five catalytic cycles,in which its catalytic performance has no obvious decrease.Moreover,Cu_(6)-NH_(2) incorporates Lewis acid and base sites in metal and ligand,respectively,which can promote catalytic efficiency in a synergistic effect in the absence of any cocatalysts.Importantly,Cu_(6)-NH_(2) can realize direct conversion of CO_(2) in simulated flue gas into oxazolidinones with high efficiency.The metal-ligand cooperative effect and integrated advantages of homogeneous and heterogeneous catalysis would provide new perspectives to achieve advanced metal nanocluster catalysts for CO_(2) conversion.