The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically revie...The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.展开更多
Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited s...Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited studies on the response of P.trinervis to different light qualities,so it is necessary to investigate the photosynthetic physiological changes of P.trinervis in different light environments.In our study,P.trinervis was grown for 8 months under light filtered by three different colored films.The three treatments were blue film,green film,and white plastic film.The effects of blue(B),green(G),and white(W)light on photosynthetic pigment content,absolute growth,photosynthetic parameters,soluble sugar content,and chlorophyll fluorescence parameters were studied,respectively.Compared to the Wtreatment,the chlorophyll a and b,carotenoids,total chlorophyll content(a+b),absolute growth of seedling height,net photosynthetic rate(PN),water use efficiency(WUE),total soluble sugars,sucrose,and nonphotochemical quenching(NPQ)of P.trinervis were significantly increased under B treatment.Meanwhile,chlorophyll a and b,carotenoids,total chlorophyll(a+b),transpiration rate(Tr),intercellular CO_(2) concentration(Ci),stomatal conductance(gs),absolute growth of seedling height and leaf length,reducing sugar,total soluble sugar content,and NPQ were significantly increased under G treatment.The results showed that the absolute growth and chlorophyll content of P.trinervis were increased under B light,while the sugar and photosynthetic parameters were increased under G light.Additional studies may look into how B light impacts absolute growth and promotional mechanisms,as well as how G light affects the accumulation of sugar levels.展开更多
To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal...To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.展开更多
Pupil dynamics are the important characteristics of face spoofing detection.The face recognition system is one of the most used biometrics for authenticating individual identity.The main threats to the facial recognit...Pupil dynamics are the important characteristics of face spoofing detection.The face recognition system is one of the most used biometrics for authenticating individual identity.The main threats to the facial recognition system are different types of presentation attacks like print attacks,3D mask attacks,replay attacks,etc.The proposed model uses pupil characteristics for liveness detection during the authentication process.The pupillary light reflex is an involuntary reaction controlling the pupil’s diameter at different light intensities.The proposed framework consists of two-phase methodologies.In the first phase,the pupil’s diameter is calculated by applying stimulus(light)in one eye of the subject and calculating the constriction of the pupil size on both eyes in different video frames.The above measurement is converted into feature space using Kohn and Clynes model-defined parameters.The Support Vector Machine is used to classify legitimate subjects when the diameter change is normal(or when the eye is alive)or illegitimate subjects when there is no change or abnormal oscillations of pupil behavior due to the presence of printed photograph,video,or 3D mask of the subject in front of the camera.In the second phase,we perform the facial recognition process.Scale-invariant feature transform(SIFT)is used to find the features from the facial images,with each feature having a size of a 128-dimensional vector.These features are scale,rotation,and orientation invariant and are used for recognizing facial images.The brute force matching algorithm is used for matching features of two different images.The threshold value we considered is 0.08 for good matches.To analyze the performance of the framework,we tested our model in two Face antispoofing datasets named Replay attack datasets and CASIA-SURF datasets,which were used because they contain the videos of the subjects in each sample having three modalities(RGB,IR,Depth).The CASIA-SURF datasets showed an 89.9%Equal Error Rate,while the Replay Attack datasets showed a 92.1%Equal Error Rate.展开更多
We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and geneti...We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.展开更多
The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the...The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.展开更多
In a greenhouse experiment plasticity of clonal growth and clonal morphology of the stoloniferous rosette herb Halerpestes nahenica Ovcz. in response to differing levels of light intensity and nutrient availability wa...In a greenhouse experiment plasticity of clonal growth and clonal morphology of the stoloniferous rosette herb Halerpestes nahenica Ovcz. in response to differing levels of light intensity and nutrient availability was studied. Total plant dry weight, leaf area of primary ramets, total number of ramets and of stolons, and total stolon length were significantly reduced, while specific internode length and specific petiole length significantly increased under deep shading (6.25% of high light intensity, 5.3% of full daylight) or under low nutrient availability. Under low nutrient availability, mean stolon internode length of H. ruthenica was significantly larger while branching intensity and number of ramets smaller than those under high nutrient availability. These responses are consistent with the foraging model of clonal plants, indicating that H. nahenica is able to forage nutrients through the plastic responses of clonal growth and clonal. morphology when it grows in heterogeneous environments. However, under deep shading, both mean stolon internode length and mean petiole length were significantly reduced, which disagrees with the findings of many other stoloniferous herbs in response to low or medium levels of shading (ca. 13%-75% of high light intensity, >10% of full daylight), suggesting that under deep shading stoloniferous herbs may not forage light through the plastic responses of spacer length. Many traits such as total plant dry weight, total number and length of stolons, total length of secondary and tertiary stolons. total number of ramets, leaf area of primary ramets and branching intensity were markedly influenced by the interaction effect of light intensity and nutrient availability. Under high light intensity nutrient availability affected these traits more pronouncedly, however under low light intensity nutrient availability either did not affect or affected less markedly on these traits, indicating that fight intensity had significant effect on nutrient foraging in H. nahenica. Under deep shading or low nutrient availability, H. ruthenica may increase its mean stolon internode length by means of thinning stolon internodes (i.e., an increase in specific internode length), which provides it with more chance to escape from resource-poor sites.展开更多
Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in...Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.展开更多
Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajec...Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.展开更多
Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural charact...Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural characteristics of phloem tissues of source leaves were observed and compared in normal and weak light intensities using the transmission electron microscopy. Results showed that the average diameters of companion cells (CC) and sieve elements (SE) of all kinds of veins were bigger in normal than that in weak light intensity, indicating that light could influence the cell development and growth. Dense cytoplasm with abundant mitochondria, endoplasmic reticulums, multivesicular bodies, vesicles and plastids were observed in normal light intensity. On the contrary, CC with small vacuolar structures and few mitochondrias, endoplasmic reticulums were shown in weak light. Misalignment of grana thylakoid margins of nectarine leaves also was seen in weak light. The sieve pores of SEs were obstructed in weak light. Chloroplasts with numerous starch grains and few mitochondrias were noticed in the mesophyll cell (MES) surrounding the bundle sheath in weak light. The storage of starch grains appeared to result from an unbalance between photosynthate production and export of photosynthates. This observation provided a strong support to the point that most leaves export the most of assimilates in the light time. Plasmodesmal densities between SE/CC, CC/PP (phloem parenchyma cell), PP/PP and PP/BSC (bundle_sheath cell) decreased in weak light. Plasmodesmata were observed between CC/SE (NS) (nacreous_walled sieve element), PP/BSC in branch veins in normal light intensity, but not in weak light. Thus apoplasmic pathway may be the main mode of transport of assimilates in weak light, however symplasmic pathway may be the main mode of transport of assimilates in normal light intensity. These results demonstrated that the solar greenhouse nectarine trees could be adapted to the weak light via the ultrastructure variation of phloem tissues of the source leaves.展开更多
Red blood cell(RBC)aggregation as well as their deformation significantly affects blood microrheology.These processes depend on various factors,one of which is concentration of the nitric oxide,one of the main signali...Red blood cell(RBC)aggregation as well as their deformation significantly affects blood microrheology.These processes depend on various factors,one of which is concentration of the nitric oxide,one of the main signaling molecule in the bloodstream.The purpose of this study was to investigate the effect of nitric oxide on the microrheological properties of red blood cells(RBCs)in RBC samples of various media after the addition of nitric oxide donor sodium nitroprusside in vitro.Microrheological properties were measured using laser aggregometer and ektacytometer based on diffuse light scattering and diffraction of laser light on a suspension of RBCs,respectively.The study found that heparin-stabilized blood showed increased RBC aggregation and deformation with sodium nitroprusside concentrations of 100,and 200M,while EDTA-stabilized blood showed slightly decreased aggregation and unchanged deformation.With washed RBCs in dextran solution,the addition of sodium nitroprusside(in the concentrations of 100,and 200M)resulted in decreased aggregation and increased deformation.These-ndings aid in our understanding of nitric oxide's effect on RBC microrheological properties.展开更多
The revolution in information sharing is fundamentally supported by the highly efficient processing,storage,and transmission of data[1].For the latter,energy consumption continuously increases with the rapid developme...The revolution in information sharing is fundamentally supported by the highly efficient processing,storage,and transmission of data[1].For the latter,energy consumption continuously increases with the rapid development of information and communication technology[2].展开更多
Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada...Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.展开更多
In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L...In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L:D=12:12,14:10 and 10:14),temperature(15℃(LT),25℃(MT)and 30℃(HT))and light intensity(100,200 and 400μmol m^(−2)s^(−1),noted as LL,ML and HL,respectively)conditions.Then the maturation time,spore release number and chlorophyll fluorescence were analyzed.The results suggested that:1)The spore maturation time was accelerated by higher temperature or higher light intensity from 62 h to 36 h,and changes in day length accelerated the spore maturation to a certain extent as compared with 12:12 light/dark cycle;2)Higher light intensity significantly decreased the chlorophyll fluorescence(Fv′/Fm′,NPQ,rETRmax andα)of the mature reproductive segment under 30℃with 12:12 light/dark cycle.But when in the other photoperiods(10:14 and 14:10 conditions),the inhibitory effects of high light intensity were alleviated significantly;3)The optimum condition for the spore maturation and release was 12:12 light/dark cycle,25℃,400μmol m^(−2)s^(−1),with both shorter and longer photoperiod reducing the spore release number;4)Higher light intensity significantly increased the spore release number under 25℃,but these effects were alleviated by 30℃treatment.This study is the first attempt to elucidate the coincidence effects of photoperiod,temperature and light intensity on the reproduction of Ulva,which would help to reveal the mechanism of the rapid proliferation of green tide.展开更多
Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechan...Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.展开更多
AIM:To assess the efficacy of artificial natural light in preventing incident myopia in primary school-age children.METHODS:This is a prospective,randomized control,intervention study.A total of 1840 students from 39 ...AIM:To assess the efficacy of artificial natural light in preventing incident myopia in primary school-age children.METHODS:This is a prospective,randomized control,intervention study.A total of 1840 students from 39 classes in 4 primary schools in Foshan participated in this study.The whole randomization method was adopted to include classes as a group according to 1:1 randomized control.Classrooms in the control group were illuminated by usual light,and classrooms in the intervention group were illuminated by artificial natural light.All students received uncorrected visual acuity and best-corrected visual acuity measurement,non-cycloplegic autorefraction,ocular biometric examination,slit lamp and strabismus examination.Three-year follow-up,the students underwent same procedures.Myopia was defined as spherical equivalent refraction≤-0.50 D and uncorrected visual acuity<20/20.RESULTS:There were 894 students in the control group and 946 students in the intervention group with a mean±SD age of 7.50±0.53y.The three-year cumulative incidence rate of myopia was 26.4%(207 incident cases among 784 eligible participants at baseline)in the control group and 21.2%(164 incident cases among 774 eligible participants at baseline)in the intervention group[difference of 5.2%(95%CI,3.7%to 10.1%);P=0.035].There was also a significant difference in the three-year change in spherical equivalent refraction for the control group(-0.81 D)compared with the intervention group[-0.63 D;difference of 0.18 D(95%CI,0.08 to 0.28 D);P<0.001].Elongation of axial length was significantly different between in the control group(0.77 mm)and the intervention group[0.72 mm;difference of 0.05 mm(95%CI,0.01 to 0.09 mm);P=0.003].CONCLUSION:Artificial natural light in the classroom of primary schools can result in reducing incidence rate of myopia during a period of three years.展开更多
BACKGROUND Light chain(AL)amyloidosis is a plasma cell dyscrasia characterized by the pathologic production and extracellular tissue deposition of fibrillar proteins derived from immunoglobulin AL fragments secreted b...BACKGROUND Light chain(AL)amyloidosis is a plasma cell dyscrasia characterized by the pathologic production and extracellular tissue deposition of fibrillar proteins derived from immunoglobulin AL fragments secreted by a clone of plasma cells,which leads to progressive dysfunction of the affected organs.The two most commonly affected organs are the heart and kidneys,and liver is rarely the dominant affected organ with only 3.9%of cases,making them prone to misdia-gnosis and missed diagnosis.CASE SUMMARY A 65-year-old woman was admitted with a 3-mo history of progressive jaundice and marked hepatomegaly.Initially,based on enhanced computed tomography scan and angiography,Budd-Chiari syndrome was considered and balloon dilatation of significant hepatic vein stenoses was performed.However,addi-tional diagnostic procedures,including liver biopsy and bone marrow-exami-nation,revealed immunoglobulin kapa AL amyloidosis with extensive liver involvement and hepatic vascular compression.The disease course was progre-ssive and fatal,and the patient eventually died 5 mo after initial presentation of symptoms.CONCLUSION AL amyloidosis with isolated liver involvement is very rare,and can be easily misdiagnosed as a vascular disease.展开更多
Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of g...Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators.展开更多
BACKGROUND Primary light chain amyloidosis is a rare and complex disease with complex clinical features and is highly susceptible to misdiagnosis and underdiagnosis in the early stages.CASE SUMMARY We report a case of...BACKGROUND Primary light chain amyloidosis is a rare and complex disease with complex clinical features and is highly susceptible to misdiagnosis and underdiagnosis in the early stages.CASE SUMMARY We report a case of a 47-year-old female patient whose only initial symptom was periorbital purpura,which was not taken seriously enough.As the disease progressed,pleural effusion gradually appeared,and after systematic diagnosis and treatment,she was diagnosed with“primary light chain amyloidosis”.She achieved rapid hematological remission after treatment with a daratumumab+bortezomib+cyclophosphamide+dexamethasone regimen.CONCLUSION Periorbital purpura can be the only initial symptom of primary light chain amyloidosis;we should pay attention to the cases where the initial clinical symptoms are only periorbital purpura.展开更多
Zhongshan,in south China’s Guangdong Province,was once known as one of the“Four Little Tigers of Guangdong”due to a high level of development of traditional industries such as decorative lighting,home appliances,an...Zhongshan,in south China’s Guangdong Province,was once known as one of the“Four Little Tigers of Guangdong”due to a high level of development of traditional industries such as decorative lighting,home appliances,and garments.In recent years,the city has attracted more attention thanks to both its industrial upgrading and its famous brands performing in the international market.Today,the added value of Zhongshan’s manufacturing industry accounts for more than 44 percent of its GDP,and the city ranks fifth in the province in the number of industrial enterprises of designated size(enterprises with a turnover exceeding RMB20 million per annum).展开更多
基金supported by Yuan Du Scholars,Clinical Research Center of Affiliated Hospital of Shandong Second Medical University,No.2022WYFYLCYJ02Weifang Key Laboratory,Weifang Science and Technology Development Plan Project Medical Category,No.2022YX093.
文摘The cGAS–STING pathway plays an important role in ischemia-reperfusion injury in the heart,liver,brain,and kidney,but its role and mechanisms in cerebral ischemia-reperfusion injury have not been systematically reviewed.Here,we outline the components of the cGAS–STING pathway and then analyze its role in autophagy,ferroptosis,cellular pyroptosis,disequilibrium of calcium homeostasis,inflammatory responses,disruption of the blood–brain barrier,microglia transformation,and complement system activation following cerebral ischemia-reperfusion injury.We further analyze the value of cGAS–STING pathway inhibitors in the treatment of cerebral ischemia-reperfusion injury and conclude that the pathway can regulate cerebral ischemia-reperfusion injury through multiple mechanisms.Inhibition of the cGAS–STING pathway may be helpful in the treatment of cerebral ischemia-reperfusion injury.
基金Applied Basic Research Foundation of Yunnan Province(Grant No.202101AU070144)the Joint Agricultural Project of Yunnan Province(Grant No.202101BD070001-127).
文摘Populus trinervis is native to China and plays an irreplaceable role in maintaining the ecological balance of boreal and temperate forests.P.trinervis mainly grows in high-altitude areas.At present,there are limited studies on the response of P.trinervis to different light qualities,so it is necessary to investigate the photosynthetic physiological changes of P.trinervis in different light environments.In our study,P.trinervis was grown for 8 months under light filtered by three different colored films.The three treatments were blue film,green film,and white plastic film.The effects of blue(B),green(G),and white(W)light on photosynthetic pigment content,absolute growth,photosynthetic parameters,soluble sugar content,and chlorophyll fluorescence parameters were studied,respectively.Compared to the Wtreatment,the chlorophyll a and b,carotenoids,total chlorophyll content(a+b),absolute growth of seedling height,net photosynthetic rate(PN),water use efficiency(WUE),total soluble sugars,sucrose,and nonphotochemical quenching(NPQ)of P.trinervis were significantly increased under B treatment.Meanwhile,chlorophyll a and b,carotenoids,total chlorophyll(a+b),transpiration rate(Tr),intercellular CO_(2) concentration(Ci),stomatal conductance(gs),absolute growth of seedling height and leaf length,reducing sugar,total soluble sugar content,and NPQ were significantly increased under G treatment.The results showed that the absolute growth and chlorophyll content of P.trinervis were increased under B light,while the sugar and photosynthetic parameters were increased under G light.Additional studies may look into how B light impacts absolute growth and promotional mechanisms,as well as how G light affects the accumulation of sugar levels.
基金Foundation of China(Grant No.U21A2032)National Natural Science Foundation of China(Grant No.42371203).
文摘To learn the process of urban land evolution before and after an earthquake is vital to formulate the urban reconstruction control policies and recovery measures in the earthquake-stricken areas.However,spatiotemporal evolution and its driving factors of urban land in earthquake-prone areas remains limited due to the scarcity of ground observation data.This research,leveraging night-time light remote sensing imagery and land cover data,conducted a comprehensive analysis of the long-term evolution characteristics of urban land in earthquake-prone areas.It introduced methodologies for assessing the socio-economic impact and the primary natural environmental factors driving urban land evolution in these regions.To validate the proposed methods,the 2008 Wenchuan earthquake-affected area in China was selected as a representative study area.The results indicated that the average Digital Number(DN)values in socio-economically impacted areas showed a trend of rising,falling,and then rising again after the earthquake.DN values in three types of damaged areas including Type Ⅱ,Type Ⅲ,and Type Ⅳ exceeded pre-earthquake levels.The analysis of determinative factors influencing urban land evolution revealed that slope and elevation were key elements in controlling urban land expansion before the earthquake,whereas factors such as slope,elevation,lithology,and faults had a stronger influence on urban land expansion after the earthquake.It can be seen that,in view of the differences in the natural conditions of regions for post-disaster reconstruction,the local government need to actively adjust and adapt to urban spatial planning,so as to leverage the scale effect of large-scale inputs of funds,facilities,human resources and other factors after the disaster,thus enhancing resilience and recovery efficiency in response to disaster impacts.
基金funded by Researchers Supporting Program at King Saud University (RSPD2023R809).
文摘Pupil dynamics are the important characteristics of face spoofing detection.The face recognition system is one of the most used biometrics for authenticating individual identity.The main threats to the facial recognition system are different types of presentation attacks like print attacks,3D mask attacks,replay attacks,etc.The proposed model uses pupil characteristics for liveness detection during the authentication process.The pupillary light reflex is an involuntary reaction controlling the pupil’s diameter at different light intensities.The proposed framework consists of two-phase methodologies.In the first phase,the pupil’s diameter is calculated by applying stimulus(light)in one eye of the subject and calculating the constriction of the pupil size on both eyes in different video frames.The above measurement is converted into feature space using Kohn and Clynes model-defined parameters.The Support Vector Machine is used to classify legitimate subjects when the diameter change is normal(or when the eye is alive)or illegitimate subjects when there is no change or abnormal oscillations of pupil behavior due to the presence of printed photograph,video,or 3D mask of the subject in front of the camera.In the second phase,we perform the facial recognition process.Scale-invariant feature transform(SIFT)is used to find the features from the facial images,with each feature having a size of a 128-dimensional vector.These features are scale,rotation,and orientation invariant and are used for recognizing facial images.The brute force matching algorithm is used for matching features of two different images.The threshold value we considered is 0.08 for good matches.To analyze the performance of the framework,we tested our model in two Face antispoofing datasets named Replay attack datasets and CASIA-SURF datasets,which were used because they contain the videos of the subjects in each sample having three modalities(RGB,IR,Depth).The CASIA-SURF datasets showed an 89.9%Equal Error Rate,while the Replay Attack datasets showed a 92.1%Equal Error Rate.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB1104500the Natural Science Foundation of Beijing under Grant No 7182091,the National Natural Science Foundation of China under Grant No 21627813the Fundamental Research Funds for the Central Universities under Grant No PYBZ1801
文摘We demonstrate a modified particle swarm optimization(PSO) algorithm to effectively shape the incident light with strong robustness and short optimization time. The performance of the modified PSO algorithm and genetic algorithm(GA) is numerically simulated. Then, using a high speed digital micromirror device, we carry out light focusing experiments with the modified PSO algorithm and GA. The experimental results show that the modified PSO algorithm has greater robustness and faster convergence speed than GA. This modified PSO algorithm has great application prospects in optical focusing and imaging inside in vivo biological tissue, which possesses a complicated background.
文摘The time processes of photosynthetic induction responses to various irradiances in Korean pine (Pinus koraiensis) seedlings grown in open-light environments and in understory of forest were studied in an area near the Research Station of Changbai Mountain Forest Ecosystems, Jilin Province, China from July 15 to August 5, 1997. The results showed that at 200 靘olm-2s-1 photosynthetic photon flux density (PPFD) and 500 靘olm-2s-1 PPFD, the induction time for the photosynthetic rates of understory-grown seedlings to reach 50% and 90% steady-state net photosynthetic rates was longer than that of the open-grown seedlings. The induction responses of open-growth seedlings at 500 靘olm-2s-1 PPFD were slower than those at 200 靘olm-2s-1 PPFD, but it was the very reverse for understory-growth seedlings, which indicates that the photosynthetic induction times of Korean pine seedlings grown in the understory depended on the sunfleck intensity.
文摘In a greenhouse experiment plasticity of clonal growth and clonal morphology of the stoloniferous rosette herb Halerpestes nahenica Ovcz. in response to differing levels of light intensity and nutrient availability was studied. Total plant dry weight, leaf area of primary ramets, total number of ramets and of stolons, and total stolon length were significantly reduced, while specific internode length and specific petiole length significantly increased under deep shading (6.25% of high light intensity, 5.3% of full daylight) or under low nutrient availability. Under low nutrient availability, mean stolon internode length of H. ruthenica was significantly larger while branching intensity and number of ramets smaller than those under high nutrient availability. These responses are consistent with the foraging model of clonal plants, indicating that H. nahenica is able to forage nutrients through the plastic responses of clonal growth and clonal. morphology when it grows in heterogeneous environments. However, under deep shading, both mean stolon internode length and mean petiole length were significantly reduced, which disagrees with the findings of many other stoloniferous herbs in response to low or medium levels of shading (ca. 13%-75% of high light intensity, >10% of full daylight), suggesting that under deep shading stoloniferous herbs may not forage light through the plastic responses of spacer length. Many traits such as total plant dry weight, total number and length of stolons, total length of secondary and tertiary stolons. total number of ramets, leaf area of primary ramets and branching intensity were markedly influenced by the interaction effect of light intensity and nutrient availability. Under high light intensity nutrient availability affected these traits more pronouncedly, however under low light intensity nutrient availability either did not affect or affected less markedly on these traits, indicating that fight intensity had significant effect on nutrient foraging in H. nahenica. Under deep shading or low nutrient availability, H. ruthenica may increase its mean stolon internode length by means of thinning stolon internodes (i.e., an increase in specific internode length), which provides it with more chance to escape from resource-poor sites.
基金This study was supported by the National Natural Science Foundation of China(Grant No.31870613)Guizhou Province High-level Innovative Talents Training Plan Project(2016)5661.
文摘Light levels determine regeneration in stands and a key concern is how to regulate the light environment of different stand types to the requirements of the understory.In this study,we selected three stands typical in south China(a Cryptomeria japonica plantation,a Quercus acutissima plantation,and a mixed stand of both)and three thinning intensities to determine the best understory light environ-ment for 3-year-old Phoebe bournei seedlings.The canopy structure,understory light environment,and photosynthe-sis and growth indicators were assessed following thin-ning.Thinning improved canopy structure and understory light availability of each stand;species composition was the reason for differences in the understory light environ-ment.Under the same thinning intensity,the mixed stand had the greatest light radiation and most balanced spectral composition.P.bournei photosynthesis and growth were closely related to the light environment;all three stands required heavy thinning to create an effective and sustained understory light environment.In a suitable understory light environment,the efficiency of light interception,absorption,and use by seedlings was enhanced,resulting in a higher carbon assimilation the main limiting factor was stomatal conductance.As a shade-avoidance signal,red/far-red radia-tion is a critical factor driving changes in photosynthesis and growth of P.bournei seedlings,and a reduction increased light absorption and use capacity and height:diameter ratios.The growth advantage transformed from diameter to height,enabling seedlings to access more light.Our findings suggest that the regeneration of shade-tolerant species such as P.bournei could be enhanced if a targeted approach to thinning based on stand type was adopted.
基金supported by the National Natural Science Foundation of China(Grant Nos.12074094 and 121774271)the Sino-German Mobility Program of the Sino-German Center for Science Funding(Grant No.M-0225)the Capacity Building for Science&Technology Innovation-Fundamental Scientific Research Funds(Grant No.00820531120017).
文摘Conventionally,the spatially structured light beams produced by metasurfaces primarily highlight the polarization modulation of the beams propagating along the optical axis or the beams'spatial transmission trajectory.In particular,along the optical axis,the polarization state is either constant or varies continuously in each output plane.Here,we develop innovative spatially structured light beams with continually changing polarization along any arbitrary spatial transmission trajectories.With tri-layer metallic metasurfaces,the geometric characteristics of each layer structure can be adjusted to modulate the phase and polarization state of the incident terahertz(THz)wave.The beam will converge to the predefined trajectory along several paths to generate a Bessel-like beam with longitudinal polarization changes.We demonstrate the versatility of the approach by designing two THz-band structured light beams with varying polarization states along the spatial helical transmission trajectory.Continuous linear polarization changes and linear polarization to right circular polarization(RCP)and back to linear polarization changes are realized respectively.The experimental results are basically consistent with the simulated results.Our proposal for arbitrary trajectory structured light beams with longitudinally varying polarization offers a practical method for continuously regulating the characteristics of spatial structured light beams with non-axial transmission.This technique has potential uses in optical encryption,particle manipulation,and biomedical imaging.
文摘Leaves from three_year_old solar greenhouse nectarine trees ( Prunus persica L. var. nectarina Ait. “Zao Hong Yan”) were used as materials in this study. It was the first time that the ultrastructural characteristics of phloem tissues of source leaves were observed and compared in normal and weak light intensities using the transmission electron microscopy. Results showed that the average diameters of companion cells (CC) and sieve elements (SE) of all kinds of veins were bigger in normal than that in weak light intensity, indicating that light could influence the cell development and growth. Dense cytoplasm with abundant mitochondria, endoplasmic reticulums, multivesicular bodies, vesicles and plastids were observed in normal light intensity. On the contrary, CC with small vacuolar structures and few mitochondrias, endoplasmic reticulums were shown in weak light. Misalignment of grana thylakoid margins of nectarine leaves also was seen in weak light. The sieve pores of SEs were obstructed in weak light. Chloroplasts with numerous starch grains and few mitochondrias were noticed in the mesophyll cell (MES) surrounding the bundle sheath in weak light. The storage of starch grains appeared to result from an unbalance between photosynthate production and export of photosynthates. This observation provided a strong support to the point that most leaves export the most of assimilates in the light time. Plasmodesmal densities between SE/CC, CC/PP (phloem parenchyma cell), PP/PP and PP/BSC (bundle_sheath cell) decreased in weak light. Plasmodesmata were observed between CC/SE (NS) (nacreous_walled sieve element), PP/BSC in branch veins in normal light intensity, but not in weak light. Thus apoplasmic pathway may be the main mode of transport of assimilates in weak light, however symplasmic pathway may be the main mode of transport of assimilates in normal light intensity. These results demonstrated that the solar greenhouse nectarine trees could be adapted to the weak light via the ultrastructure variation of phloem tissues of the source leaves.
基金supported by the Russian Science Foundation grant(No.22-15-00120)supported by the grant(No.21-2-10-59-1)from the Foundation for the Development of Theoretical Physics and Mathematics BASIS.
文摘Red blood cell(RBC)aggregation as well as their deformation significantly affects blood microrheology.These processes depend on various factors,one of which is concentration of the nitric oxide,one of the main signaling molecule in the bloodstream.The purpose of this study was to investigate the effect of nitric oxide on the microrheological properties of red blood cells(RBCs)in RBC samples of various media after the addition of nitric oxide donor sodium nitroprusside in vitro.Microrheological properties were measured using laser aggregometer and ektacytometer based on diffuse light scattering and diffraction of laser light on a suspension of RBCs,respectively.The study found that heparin-stabilized blood showed increased RBC aggregation and deformation with sodium nitroprusside concentrations of 100,and 200M,while EDTA-stabilized blood showed slightly decreased aggregation and unchanged deformation.With washed RBCs in dextran solution,the addition of sodium nitroprusside(in the concentrations of 100,and 200M)resulted in decreased aggregation and increased deformation.These-ndings aid in our understanding of nitric oxide's effect on RBC microrheological properties.
文摘The revolution in information sharing is fundamentally supported by the highly efficient processing,storage,and transmission of data[1].For the latter,energy consumption continuously increases with the rapid development of information and communication technology[2].
文摘Traffic intersections are incredibly dangerous for drivers and pedestrians. Statistics from both Canada and the U.S. show a high number of fatalities and serious injuries related to crashes at intersections. In Canada, during 2019, the National Collision Database shows that 28% of traffic fatalities and 42% of serious injuries occurred at intersections. Likewise, the U.S. National Highway Traffic Administration (NHTSA) found that about 40% of the estimated 5,811,000 accidents in the U.S. during the year studied were intersection-related crashes. In fact, a major survey by the car insurance industry found that nearly 85% of drivers could not identify the correct action to take when approaching a yellow traffic light at an intersection. One major reason for these accidents is the “yellow light dilemma,” the ambiguous situation where a driver should stop or proceed forward when unexpectedly faced with a yellow light. This situation is even further exacerbated by the tendency of aggressive drivers to inappropriately speed up on the yellow just to get through the traffic light. A survey of Canadian drivers conducted by the Traffic Injury Research Foundation found that 9% of drivers admitted to speeding up to get through a traffic light. Another reason for these accidents is the increased danger of making a left-hand turn on yellow. According to the National Highway Traffic Safety Association (NHTSA), left turns occur in approximately 22.2% of collisions—as opposed to just 1.2% for right turns. Moreover, a study by CNN found left turns are three times as likely to kill pedestrians than right turns. The reason left turns are so much more likely to cause an accident is because they take a driver against traffic and in the path of oncoming cars. Additionally, most of these left turns occur at the driver’s discretion—as opposed to the distressingly brief left-hand arrow at busy intersections. Drive Safe Now proposes a workable solution for reducing the number of accidents occurring during a yellow light at intersections. We believe this fairly simple solution will save lives, prevent injuries, reduce damage to public and private property, and decrease insurance costs.
基金supported by the Natural Science Foundation of Zhejiang Province(No.LY23D060003)the Key Program of Science and Technology Innovation in Ningbo(2021Z114,2023Z118)sponsored by K.C.Wong Magna Fund in Ningbo University.
文摘In order to study the complex effects of photoperiod,temperature,and light intensity on the spore maturation and release number of Ulva prolifera,we cultured thalli segment(2–3 mm)under three different photoperiods(L:D=12:12,14:10 and 10:14),temperature(15℃(LT),25℃(MT)and 30℃(HT))and light intensity(100,200 and 400μmol m^(−2)s^(−1),noted as LL,ML and HL,respectively)conditions.Then the maturation time,spore release number and chlorophyll fluorescence were analyzed.The results suggested that:1)The spore maturation time was accelerated by higher temperature or higher light intensity from 62 h to 36 h,and changes in day length accelerated the spore maturation to a certain extent as compared with 12:12 light/dark cycle;2)Higher light intensity significantly decreased the chlorophyll fluorescence(Fv′/Fm′,NPQ,rETRmax andα)of the mature reproductive segment under 30℃with 12:12 light/dark cycle.But when in the other photoperiods(10:14 and 14:10 conditions),the inhibitory effects of high light intensity were alleviated significantly;3)The optimum condition for the spore maturation and release was 12:12 light/dark cycle,25℃,400μmol m^(−2)s^(−1),with both shorter and longer photoperiod reducing the spore release number;4)Higher light intensity significantly increased the spore release number under 25℃,but these effects were alleviated by 30℃treatment.This study is the first attempt to elucidate the coincidence effects of photoperiod,temperature and light intensity on the reproduction of Ulva,which would help to reveal the mechanism of the rapid proliferation of green tide.
基金the National Natural Science Foundation of China(32071955)the Natural Science Foundation of Shaanxi Province,China(2018JQ3061).
文摘Lodging is still the key factor that limits continuous increases in wheat yields today,because the mechanical strength of culms is reduced due to low-light stress in populations under high-yield cultivation.The mechanical properties of the culm are mainly determined by lignin,which is affected by the light environment.However,little is known about whether the light environment can be sufficiently improved by changing the population distribution to inhibit culm lodging.Therefore,in this study,we used the wheat cultivar“Xinong 979”to establish a low-density homogeneous distribution treatment(LD),high-density homogeneous distribution treatment(HD),and high-density heterogeneous distribution treatment(HD-h)to study the regulatory effects and mechanism responsible for differences in the lodging resistance of wheat culms under different population distributions.Compared with LD,HD significantly reduced the light transmittance in the middle and basal layers of the canopy,the net photosynthetic rate in the middle and lower leaves of plants,the accumulation of lignin in the culm,and the breaking resistance of the culm,and thus the lodging index values increased significantly,with lodging rates of 67.5%in 2020–2021 and 59.3%in 2021–2022.Under HD-h,the light transmittance and other indicators in the middle and basal canopy layers were significantly higher than those under HD,and the lodging index decreased to the point that no lodging occurred.Compared with LD,the activities of phenylalanine ammonia-Lyase(PAL),4-coumarate:coenzyme A ligase(4CL),catechol-O-methyltransferase(COMT),and cinnamyl-alcohol dehydrogenase(CAD)in the lignin synthesis pathway were significantly reduced in the culms under HD during the critical period for culm formation,and the relative expression levels of TaPAL,Ta4CL,TaCOMT,and TaCAD were significantly downregulated.However,the activities of lignin synthesis-related enzymes and their gene expression levels were significantly increased under HD-h compared with HD.A partial least squares path modeling analysis found significant positive effects between the canopy light environment,the photosynthetic capacity of the middle and lower leaves of plants,lignin synthesis and accumulation,and lodging resistance in the culms.Thus,under conventional high-density planting,the risk of wheat lodging was significantly higher.Accordingly,the canopy light environment can be optimized by changing the heterogeneity of the population distribution to improve the photosynthetic capacity of the middle and lower leaves of plants,promote lignin accumulation in the culm,and enhance lodging resistance in wheat.These findings provide a basis for understanding the mechanism responsible for the lower mechanical strength of the culm under high-yield wheat cultivation,and a theoretical basis and for developing technical measures to enhance lodging resistance.
基金Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120011)Medical Research,Foshan Health and Wellness Department(No.20220374).
文摘AIM:To assess the efficacy of artificial natural light in preventing incident myopia in primary school-age children.METHODS:This is a prospective,randomized control,intervention study.A total of 1840 students from 39 classes in 4 primary schools in Foshan participated in this study.The whole randomization method was adopted to include classes as a group according to 1:1 randomized control.Classrooms in the control group were illuminated by usual light,and classrooms in the intervention group were illuminated by artificial natural light.All students received uncorrected visual acuity and best-corrected visual acuity measurement,non-cycloplegic autorefraction,ocular biometric examination,slit lamp and strabismus examination.Three-year follow-up,the students underwent same procedures.Myopia was defined as spherical equivalent refraction≤-0.50 D and uncorrected visual acuity<20/20.RESULTS:There were 894 students in the control group and 946 students in the intervention group with a mean±SD age of 7.50±0.53y.The three-year cumulative incidence rate of myopia was 26.4%(207 incident cases among 784 eligible participants at baseline)in the control group and 21.2%(164 incident cases among 774 eligible participants at baseline)in the intervention group[difference of 5.2%(95%CI,3.7%to 10.1%);P=0.035].There was also a significant difference in the three-year change in spherical equivalent refraction for the control group(-0.81 D)compared with the intervention group[-0.63 D;difference of 0.18 D(95%CI,0.08 to 0.28 D);P<0.001].Elongation of axial length was significantly different between in the control group(0.77 mm)and the intervention group[0.72 mm;difference of 0.05 mm(95%CI,0.01 to 0.09 mm);P=0.003].CONCLUSION:Artificial natural light in the classroom of primary schools can result in reducing incidence rate of myopia during a period of three years.
基金Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-034A.
文摘BACKGROUND Light chain(AL)amyloidosis is a plasma cell dyscrasia characterized by the pathologic production and extracellular tissue deposition of fibrillar proteins derived from immunoglobulin AL fragments secreted by a clone of plasma cells,which leads to progressive dysfunction of the affected organs.The two most commonly affected organs are the heart and kidneys,and liver is rarely the dominant affected organ with only 3.9%of cases,making them prone to misdia-gnosis and missed diagnosis.CASE SUMMARY A 65-year-old woman was admitted with a 3-mo history of progressive jaundice and marked hepatomegaly.Initially,based on enhanced computed tomography scan and angiography,Budd-Chiari syndrome was considered and balloon dilatation of significant hepatic vein stenoses was performed.However,addi-tional diagnostic procedures,including liver biopsy and bone marrow-exami-nation,revealed immunoglobulin kapa AL amyloidosis with extensive liver involvement and hepatic vascular compression.The disease course was progre-ssive and fatal,and the patient eventually died 5 mo after initial presentation of symptoms.CONCLUSION AL amyloidosis with isolated liver involvement is very rare,and can be easily misdiagnosed as a vascular disease.
基金supported by the National Natural Science Foundation of China(Nos.12174444 and 52202195)the Natural Science Foundation of Hunan Province(2020RC3032)。
文摘Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics.The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter which can be further integrated into arbitrary platforms by van der Waals forces.However,due to the zero bandgap,graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors.Here,we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride(Gr/hBN)heterostructures.Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields,emitting bright photons from the near-infrared to the visible spectral range.By eliminating the heat dissipation channel of the substrate,the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO2or hBN.Wefurther demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium.Direct cooling ofhigh-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface,resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation.It is found thatsuspending the Gr/hBN heterostructures on the SiO2trenches significantly modifies the light emission due to the formation of the optical cavity and showed a~440%enhancement inintensity at the peak wavelength of 940 nm compared to the black-body thermal radiation.The demonstration of electrically driven ultrafast light emission from suspended Gr/hBNheterostructures sheds the light on applications of graphene heterostructures in photonicintegrated circuits,such as broadband light sources and ultrafast thermo-optic phase modulators.
基金Supported by the Henan Province Medical Science and Technology Research Plan Joint Construction Project,No.LHGJ20210533Xinxiang Science and Technology Research Project,No.GG2020029.
文摘BACKGROUND Primary light chain amyloidosis is a rare and complex disease with complex clinical features and is highly susceptible to misdiagnosis and underdiagnosis in the early stages.CASE SUMMARY We report a case of a 47-year-old female patient whose only initial symptom was periorbital purpura,which was not taken seriously enough.As the disease progressed,pleural effusion gradually appeared,and after systematic diagnosis and treatment,she was diagnosed with“primary light chain amyloidosis”.She achieved rapid hematological remission after treatment with a daratumumab+bortezomib+cyclophosphamide+dexamethasone regimen.CONCLUSION Periorbital purpura can be the only initial symptom of primary light chain amyloidosis;we should pay attention to the cases where the initial clinical symptoms are only periorbital purpura.
文摘Zhongshan,in south China’s Guangdong Province,was once known as one of the“Four Little Tigers of Guangdong”due to a high level of development of traditional industries such as decorative lighting,home appliances,and garments.In recent years,the city has attracted more attention thanks to both its industrial upgrading and its famous brands performing in the international market.Today,the added value of Zhongshan’s manufacturing industry accounts for more than 44 percent of its GDP,and the city ranks fifth in the province in the number of industrial enterprises of designated size(enterprises with a turnover exceeding RMB20 million per annum).