Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including O...Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.展开更多
Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BC...Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.展开更多
It is well known that interleavers play a critical role in Turbo coding/decoding schemes, and contention-free interleaver design has become a serious problem in the paraUelization of Turbo decoding, which is indispens...It is well known that interleavers play a critical role in Turbo coding/decoding schemes, and contention-free interleaver design has become a serious problem in the paraUelization of Turbo decoding, which is indispensable to meet the demands for high throughput and low latency in next generation mobile communication systems. This paper unveils the fact that interleavers based on permutation polynomials modulo N are contention-free for every window size W, a factor of the intedeaver length N, which, also called maximum contention-free interleavers.展开更多
To improve the reliable performance of information transmission in cooperative relay networks, the scheme of the max-rate spatial channel pairing (SCP) based on maximum ratio combining (MRC) is proposed. The schem...To improve the reliable performance of information transmission in cooperative relay networks, the scheme of the max-rate spatial channel pairing (SCP) based on maximum ratio combining (MRC) is proposed. The scheme includes three steps: channel phase cancellation, MRC, and SCP. Eventually, the solution of the scheme is modeled as convex optimization. The objective function of the optimization problem is to maximize the transmission rate and the optimization variable is the strategy of pairing between the uplink spatial sub-channels of each user and the corresponding downlink spatial ones. The theorem of the arrangement inequalities is adopted to obtain the approximate closed-form solution of the optimal pairing for this convex optimization. Simulation results demonstrate that compared to the existing distributed space-time block coding and coherent combined schemes without SCP, the proposed max-rate SCP plus MRC algorithm achieves appreciable improvements in symbol error rate in medium and high signal-to-noise ratio regimes. The achievable performance gain is due to the use of maxrate SCP.展开更多
Let Ф(u ×v, k, Aa, Ac) be the largest possible number of codewords among all two- dimensional (u ×v, k, λa, λc) optical orthogonal codes. A 2-D (u× v, k, λa, λ)-OOC with Ф(u× v, k, λ...Let Ф(u ×v, k, Aa, Ac) be the largest possible number of codewords among all two- dimensional (u ×v, k, λa, λc) optical orthogonal codes. A 2-D (u× v, k, λa, λ)-OOC with Ф(u× v, k, λa, λc) codewords is said to be maximum. In this paper, the number of codewords of a maximum 2-D (u × v, 4, 1, 3)-OOC has been determined.展开更多
An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcti...An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcting in a single process, with superior performance compared with traditional separated techniques. The concept of adaptiveness is applied not only to the source model but also to the amount of coding redundancy. In addition, an improved branch metric computing algorithm and a faster sequential searching algorithm compared with the system proposed by Grangetto were proposed. The proposed system is tested in the case of image transmission over the AWGN channel, and compared with traditional separated system in terms of packet error rate and complexity. Both hard and soft decoding were taken into account.展开更多
Improving power distribution characteristics of space time block codes(STBCs),namely peak to average power ratio(PAPR),average to minimum power ratio(Ave/min),and probability of transmitting"zero"by antenna,...Improving power distribution characteristics of space time block codes(STBCs),namely peak to average power ratio(PAPR),average to minimum power ratio(Ave/min),and probability of transmitting"zero"by antenna,makes easier their practical implementation.To this end,this study proposes to multiply full diversity STB C with a non-singular matrix in multiple input multiple output(MIMO)or multiple input single output(MISO)systems with linear or maximum likelihood(ML)receivers.It is proved that the obtained code achieves full diversity and the order of detection complexity does not change.The proposed method is applied to different types of STBCs.The bit error rate(BER)and power distribution characteristics of the new codes demonstrate the superiority of the introduced method.Further,lower and upper bounds on the BER of the obtained STBCs are derived for all receivers.The proposed method provides trade-off among PAPR,spectral efficiency,energy efficiency,and BER.展开更多
Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this pape...Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.展开更多
A multi dimensional concatenation scheme for block codes is introduced, in which information symbols are interleaved and re encoded for more than once. It provides a convenient platform to design high performance co...A multi dimensional concatenation scheme for block codes is introduced, in which information symbols are interleaved and re encoded for more than once. It provides a convenient platform to design high performance codes with flexible interleaver size. Coset based MAP soft in/soft out decoding algorithms are presented for the F24 code. Simulation results show that the proposed coding scheme can achieve high coding gain with flexible interleaver length and very low decoding complexity.展开更多
An algebraic construction methodology is proposed to design binary time-invariant convolutional low-density parity-check(LDPC)codes.Assisted by a proposed partial search algorithm,the polynomialform parity-check matri...An algebraic construction methodology is proposed to design binary time-invariant convolutional low-density parity-check(LDPC)codes.Assisted by a proposed partial search algorithm,the polynomialform parity-check matrix of the time-invariant convolutional LDPC code is derived by combining some special codewords of an(n,2,n−1)code.The achieved convolutional LDPC codes possess the characteristics of comparatively large girth and given syndrome former memory.The objective of our design is to enable the time-invariant convolutional LDPC codes the advantages of excellent error performance and fast encoding.In particular,the error performance of the proposed convolutional LDPC code with small constraint length is superior to most existing convolutional LDPC codes.展开更多
It is well-known that the multi-valued CDMA spreading codes can be designed by means of a pair of mirror multi-rate filter banks based on some optimizing criterion. This paper indicates that there exists a theoretical...It is well-known that the multi-valued CDMA spreading codes can be designed by means of a pair of mirror multi-rate filter banks based on some optimizing criterion. This paper indicates that there exists a theoretical bound in the performance of its circulating correlation property, which is given by an explicit expression. Based on this analysis, a criterion of maximizing entropy is proposed to design such codes. Computer simulation result suggests that the resulted codes outperform the conventional binary balanced Gold codes for an asynchronous CDMA system.展开更多
Recently, space time block codes (STBCs) are proposed for multi-input and multi-output (MIMO) antenna systems. Designing an STBC with both low decoding complexity and non-vanishing property for the Long Term Evolution...Recently, space time block codes (STBCs) are proposed for multi-input and multi-output (MIMO) antenna systems. Designing an STBC with both low decoding complexity and non-vanishing property for the Long Term Evolution Advanced (LTE-A) remains an open issue. In this paper, first our previously proposed STBC’s non-vanishing property will be completely described. The proposed STBC scheme has some interesting properties: 1) the scheme can achieve full rate and full diversity;2) its maximum likelihood (ML) decoding requires a joint detection of three real symbols;3) the minimum determinant values (MDVs) do not vanish by increasing signal constellation sizes;4) compatible with the single antenna transmission mode. The sentence has been dropped. Second, in order to improve BER performance, we propose a variant of proposed STBC. This scheme further decreases the detection complexity with a rate reduction of 33%;moreover, non-vanishing MDVs property is preserved. The simulation results show the second proposed STBC has better BER performance compared with other schemes.展开更多
Prior to hardware implementation, simulation is an important step in the study of systems such as Direct Sequence Code Division Multiple Access (DS-CDMA). A useful technique is presented, allowing to model and simulat...Prior to hardware implementation, simulation is an important step in the study of systems such as Direct Sequence Code Division Multiple Access (DS-CDMA). A useful technique is presented, allowing to model and simulate Linear Feedback Shift Register (LFSR) for CDMA. It uses the Scilab package and its modeling tool for dynamical systems Xcos. PN-Generators are designed for the quadrature-phase modulation and the Gold Code Generator for Global Positioning System (GPS). This study gives a great flexibility in the conception of LFSR and the analysis of Maximum Length Sequences (MLS) used by spread spectrum systems. Interesting results have been obtained, which allow the verification of generated sequences and their exploitation by signal processing tools.展开更多
In inertial confinement fusion (ICF), X-ray coded imaging is considered as the most potential means to diagnose the compressed core. The traditional Richardson-Lucy (RL) method has a strong ability to deblur the i...In inertial confinement fusion (ICF), X-ray coded imaging is considered as the most potential means to diagnose the compressed core. The traditional Richardson-Lucy (RL) method has a strong ability to deblur the image where the noise follows the Poisson distribution. However, it always suffers from over-fitting and noise amplification, especially when the signal-to-noise ratio of image is relatively low. In this paper, we propose an improved deconvolution method for X-ray coded imaging. We model the image data as a set of independent Gaussian distributions and derive the iterative solution with a maximum-likelihood scheme. The experimental results on X-ray coded imaging data demonstrate that this method is superior to the RL method in terms of anti-overfitting and noise suppression.展开更多
基金supported by the Excellent Foreign Student scholarship program,Sirindhorn International Institute of Technology.
文摘Space-Time Block Coded(STBC)Orthogonal Frequency Division Multiplexing(OFDM)satisfies higher data-rate requirements while maintaining signal quality in a multipath fading channel.However,conventional STBCs,including Orthogonal STBCs(OSTBCs),Non-Orthogonal(NOSTBCs),and Quasi-Orthogonal STBCs(QOSTBCs),do not provide both maximal diversity order and unity code rate simultaneously for more than two transmit antennas.This paper targets this problem and applies Maximum Rank Distance(MRD)codes in designing STBCOFDM systems.By following the direct-matrix construction method,we can construct binary extended finite field MRD-STBCs for any number of transmitting antennas.Work uses MRD-STBCs built over Phase-Shift Keying(PSK)modulation to develop an MRD-based STBC-OFDM system.The MRD-based STBC-OFDM system sacrifices minor error performance compared to traditional OSTBC-OFDM but shows improved results against NOSTBC and QOSTBC-OFDM.It also provides 25%higher data-rates than OSTBC-OFDM in configurations that use more than two transmit antennas.The tradeoffs are minor increases in computational complexity and processing delays.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61271423)
文摘Soft-decision decoding of BCH code in the global navigation satellite system( GNSS) is investigated in order to improve the performance of traditional hard-decision decoding. Using the nice structural properties of BCH code,a soft-decision decoding scheme is proposed. It is theoretically shown that the proposed scheme exactly performs maximum-likelihood( ML) decoding,which means the decoding performance is optimal. Moreover,an efficient implementation method of the proposed scheme is designed based on Viterbi algorithm. Simulation results show that the performance of the proposed soft-decision ML decoding scheme is significantly improved compared with the traditional hard-decision decoding method at the expense of moderate complexity increase.
基金Project (No. 60332030) supported by the National Natural ScienceFoundation of China
文摘It is well known that interleavers play a critical role in Turbo coding/decoding schemes, and contention-free interleaver design has become a serious problem in the paraUelization of Turbo decoding, which is indispensable to meet the demands for high throughput and low latency in next generation mobile communication systems. This paper unveils the fact that interleavers based on permutation polynomials modulo N are contention-free for every window size W, a factor of the intedeaver length N, which, also called maximum contention-free interleavers.
基金The Open Research Fund of National Mobile Communications Research Laboratory of Southeast University(No.2013D02)the Open Research Fund of National Key Laboratory of Electromagnetic Environment of China Research Institute of Radio Wave Propagation(No.201500013)the National Natural Science Foundation of China(No.61271230,61472190)
文摘To improve the reliable performance of information transmission in cooperative relay networks, the scheme of the max-rate spatial channel pairing (SCP) based on maximum ratio combining (MRC) is proposed. The scheme includes three steps: channel phase cancellation, MRC, and SCP. Eventually, the solution of the scheme is modeled as convex optimization. The objective function of the optimization problem is to maximize the transmission rate and the optimization variable is the strategy of pairing between the uplink spatial sub-channels of each user and the corresponding downlink spatial ones. The theorem of the arrangement inequalities is adopted to obtain the approximate closed-form solution of the optimal pairing for this convex optimization. Simulation results demonstrate that compared to the existing distributed space-time block coding and coherent combined schemes without SCP, the proposed max-rate SCP plus MRC algorithm achieves appreciable improvements in symbol error rate in medium and high signal-to-noise ratio regimes. The achievable performance gain is due to the use of maxrate SCP.
基金Supported by the National Natural Science Foundation of China(61071221,10831002)
文摘Let Ф(u ×v, k, Aa, Ac) be the largest possible number of codewords among all two- dimensional (u ×v, k, λa, λc) optical orthogonal codes. A 2-D (u× v, k, λa, λ)-OOC with Ф(u× v, k, λa, λc) codewords is said to be maximum. In this paper, the number of codewords of a maximum 2-D (u × v, 4, 1, 3)-OOC has been determined.
文摘An approximately optimal adaptive arithmetic coding (AC) system using a forbidden symbol (FS) over noisy channels was proposed which allows one to jointly and adaptively design the source decoding and channel correcting in a single process, with superior performance compared with traditional separated techniques. The concept of adaptiveness is applied not only to the source model but also to the amount of coding redundancy. In addition, an improved branch metric computing algorithm and a faster sequential searching algorithm compared with the system proposed by Grangetto were proposed. The proposed system is tested in the case of image transmission over the AWGN channel, and compared with traditional separated system in terms of packet error rate and complexity. Both hard and soft decoding were taken into account.
基金supported by Iran National Science Foundation(INSF)under grant number 93018647。
文摘Improving power distribution characteristics of space time block codes(STBCs),namely peak to average power ratio(PAPR),average to minimum power ratio(Ave/min),and probability of transmitting"zero"by antenna,makes easier their practical implementation.To this end,this study proposes to multiply full diversity STB C with a non-singular matrix in multiple input multiple output(MIMO)or multiple input single output(MISO)systems with linear or maximum likelihood(ML)receivers.It is proved that the obtained code achieves full diversity and the order of detection complexity does not change.The proposed method is applied to different types of STBCs.The bit error rate(BER)and power distribution characteristics of the new codes demonstrate the superiority of the introduced method.Further,lower and upper bounds on the BER of the obtained STBCs are derived for all receivers.The proposed method provides trade-off among PAPR,spectral efficiency,energy efficiency,and BER.
基金Supported by the Foundation of Ministry of Education of China (211CERS10)
文摘Most of multimedia schemes employ variable-length codes (VLCs) like Huffman code as core components in obtaining high compression rates. However VLC methods are very sensitive to channel noise. The goal of this paper is to salvage as many data from the damaged packets as possible for higher audiovisual quality. This paper proposes an integrated joint source-channel decoder (I-JSCD) at a symbol-level using three-dimensional (3-D) trellis representation for first-order Markov sources encoded with VLC source code and convolutional channel code. This method combines source code and channel code state-spaces and bit-lengths to construct a two-dimensional (2-D) state-space, and then develops a 3-D trellis and a maximum a-posterior (MAP) algorithm to estimate the source sequence symbol by symbol. Experiment results demonstrate that our method results in significant improvement in decoding performance, it can salvage at least half of (50%) data in any channel error rate, and can provide additional error resilience to VLC stream like image, audio, video stream over high error rate links.
文摘A multi dimensional concatenation scheme for block codes is introduced, in which information symbols are interleaved and re encoded for more than once. It provides a convenient platform to design high performance codes with flexible interleaver size. Coset based MAP soft in/soft out decoding algorithms are presented for the F24 code. Simulation results show that the proposed coding scheme can achieve high coding gain with flexible interleaver length and very low decoding complexity.
基金the National Natural Science Foundation of China(No.61401164)。
文摘An algebraic construction methodology is proposed to design binary time-invariant convolutional low-density parity-check(LDPC)codes.Assisted by a proposed partial search algorithm,the polynomialform parity-check matrix of the time-invariant convolutional LDPC code is derived by combining some special codewords of an(n,2,n−1)code.The achieved convolutional LDPC codes possess the characteristics of comparatively large girth and given syndrome former memory.The objective of our design is to enable the time-invariant convolutional LDPC codes the advantages of excellent error performance and fast encoding.In particular,the error performance of the proposed convolutional LDPC code with small constraint length is superior to most existing convolutional LDPC codes.
基金Supported by the National Natural Science Foundation of China(No.69872027)
文摘It is well-known that the multi-valued CDMA spreading codes can be designed by means of a pair of mirror multi-rate filter banks based on some optimizing criterion. This paper indicates that there exists a theoretical bound in the performance of its circulating correlation property, which is given by an explicit expression. Based on this analysis, a criterion of maximizing entropy is proposed to design such codes. Computer simulation result suggests that the resulted codes outperform the conventional binary balanced Gold codes for an asynchronous CDMA system.
文摘Recently, space time block codes (STBCs) are proposed for multi-input and multi-output (MIMO) antenna systems. Designing an STBC with both low decoding complexity and non-vanishing property for the Long Term Evolution Advanced (LTE-A) remains an open issue. In this paper, first our previously proposed STBC’s non-vanishing property will be completely described. The proposed STBC scheme has some interesting properties: 1) the scheme can achieve full rate and full diversity;2) its maximum likelihood (ML) decoding requires a joint detection of three real symbols;3) the minimum determinant values (MDVs) do not vanish by increasing signal constellation sizes;4) compatible with the single antenna transmission mode. The sentence has been dropped. Second, in order to improve BER performance, we propose a variant of proposed STBC. This scheme further decreases the detection complexity with a rate reduction of 33%;moreover, non-vanishing MDVs property is preserved. The simulation results show the second proposed STBC has better BER performance compared with other schemes.
文摘Prior to hardware implementation, simulation is an important step in the study of systems such as Direct Sequence Code Division Multiple Access (DS-CDMA). A useful technique is presented, allowing to model and simulate Linear Feedback Shift Register (LFSR) for CDMA. It uses the Scilab package and its modeling tool for dynamical systems Xcos. PN-Generators are designed for the quadrature-phase modulation and the Gold Code Generator for Global Positioning System (GPS). This study gives a great flexibility in the conception of LFSR and the analysis of Maximum Length Sequences (MLS) used by spread spectrum systems. Interesting results have been obtained, which allow the verification of generated sequences and their exploitation by signal processing tools.
基金Project supported by the National High-Tech ICF Committee of China,Foundation of China Academy of Engineering Physics(Grant Nos.2009A0102003 and 2011B0102021)the National Natural Science Foundation of China(Grant No.10905051)
文摘In inertial confinement fusion (ICF), X-ray coded imaging is considered as the most potential means to diagnose the compressed core. The traditional Richardson-Lucy (RL) method has a strong ability to deblur the image where the noise follows the Poisson distribution. However, it always suffers from over-fitting and noise amplification, especially when the signal-to-noise ratio of image is relatively low. In this paper, we propose an improved deconvolution method for X-ray coded imaging. We model the image data as a set of independent Gaussian distributions and derive the iterative solution with a maximum-likelihood scheme. The experimental results on X-ray coded imaging data demonstrate that this method is superior to the RL method in terms of anti-overfitting and noise suppression.