We examined the influences of the wind fi eld and wave-current interaction(WCI)on the numerical simulation results of typhoon-induced wind waves in the northern East China Sea(NECS)using the coupled Simulating Waves N...We examined the influences of the wind fi eld and wave-current interaction(WCI)on the numerical simulation results of typhoon-induced wind waves in the northern East China Sea(NECS)using the coupled Simulating Waves Nearshore+Advanced Circulation(SWAN+ADCIRC)model.The simulations were performed during two typhoon events(Lekima and Muifa),and two widely used reanalysis wind fields,the Climate Forecast System Version 2(CFSv2)from the National Centers for Environmental Prediction(NCEP)and the fifth-generation European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis(ERA5),were compared.The results indicate that the ERA5 and CFSv2 wind fields both reliably reproduced the wind variations measured by in-situ buoys,and the accuracy of the winds from ERA5 were generally better than those from CFSv2 because CFSv2 tended to overestimate the wind speed and the simulated significant wave height(SWH),particularly the peak SWH.The WCI effects between the two wind field simulations were similar;these effects enhanced the SWH throughout the nearshore NECS during both typhoons but suppressed the SWH on the right side of the Typhoon Muifa track in the deep and off shore sea areas.In summary,variations in the water depth and current propagation direction dominate the modulation of wave height.展开更多
The composition,provenance,and genetic mechanism of sediment on different sedimentary units of the East China Sea(ECS)shelf are essential for understanding the depositional dynamics environment in the ECS.The sediment...The composition,provenance,and genetic mechanism of sediment on different sedimentary units of the East China Sea(ECS)shelf are essential for understanding the depositional dynamics environment in the ECS.The sediments in the northern ECS shelf are distributed in a ring-shaped distribution centered on the southwestern Cheju Island Mud.From the inside to the outside,the grain size goes from fine to coarse.Aside from the“grain size effect”,hydrodynamic sorting and mineral composition are important restrictions on the content of rare earth elements(REEs).Based on the grain size,REEs,and clay mineral composition of 300 surface sediments,as well as the sedimentary genesis,the northern ECS shelf is divided into three geochemical zones:southwestern Cheju Island Mud Area(ZoneⅠ),Changjiang Shoal Sand Ridges(ZoneⅡ-1),Sand Ridges of the East China Sea shelf(ZoneⅡ-2).The northern ECS shelf is mostly impacted by Chinese mainland rivers(the Changjiang River and Huanghe River),and the provenance and transport mechanism of sediments of different grain sizes is diverse.The bulk sediments come primarily from the Changjiang River,with some material from the Huanghe River carried by the Yellow Sea Coastal Current and the North Jiangsu Coastal Current,and less from Korean rivers.Among them,surface sediments in the southwestern Cheju Island Mud Area(ZoneⅠ)come mostly from the Changjiang River and partly from the Huanghe River.It was formed by the counterclockwise rotating cold eddies in the northern ECS shelf,which caused the sedimentation and accumulation of the fine-grained sediments of the Changjiang River and the Huanghe River.The Changjiang Shoal Sand Ridges(ZoneⅡ-1)were developed during the early-middle Holocene sea-level highstand.It is the modern tidal sand ridge sediment formed by intense hydrodynamic action under the influence of the Yellow Sea Coastal Current,North Jiangsu Coastal Current,and Changjiang Diluted Water.The surface sediments mainly originate from the Changjiang River and Huanghe River,with the Changjiang River dominating,and the Korean River(Hanjiang River)influencing just a few stations.Sand Ridges of the East China Sea shelf(ZoneⅡ-2)are the relict sediments of the paleo-Changjiang River created by sea invasion at the end of the Last Deglaciation in the Epipleistocene.The clay mineral composition of the surface sediments in the study area is just dominated by the Changjiang River,with the North Jiangsu Coastal Current and the Changjiang Diluted Water as the main transporting currents.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.U1706216,41976010,42006027,U1806227)the Natural Science Foundation of Shandong Province,China(No.ZR2016DQ16)+2 种基金the Key Deployment Project of Center for Ocean Mega-Science,Chinese Academy of Sciences(Nos.COMS2019J02,COMS2019J05)the Chinese Academy of Sciences Strategic Priority Project(Nos.XDA19060202,XDA19060502)the National Key Research and Development Program of China(No.2016YFC1402000)。
文摘We examined the influences of the wind fi eld and wave-current interaction(WCI)on the numerical simulation results of typhoon-induced wind waves in the northern East China Sea(NECS)using the coupled Simulating Waves Nearshore+Advanced Circulation(SWAN+ADCIRC)model.The simulations were performed during two typhoon events(Lekima and Muifa),and two widely used reanalysis wind fields,the Climate Forecast System Version 2(CFSv2)from the National Centers for Environmental Prediction(NCEP)and the fifth-generation European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis(ERA5),were compared.The results indicate that the ERA5 and CFSv2 wind fields both reliably reproduced the wind variations measured by in-situ buoys,and the accuracy of the winds from ERA5 were generally better than those from CFSv2 because CFSv2 tended to overestimate the wind speed and the simulated significant wave height(SWH),particularly the peak SWH.The WCI effects between the two wind field simulations were similar;these effects enhanced the SWH throughout the nearshore NECS during both typhoons but suppressed the SWH on the right side of the Typhoon Muifa track in the deep and off shore sea areas.In summary,variations in the water depth and current propagation direction dominate the modulation of wave height.
基金The National Natural Science Foundation of China under contract Nos 42276084 and 42176078the Special survey items of the China Geological Survey under contract Nos DD20190205 and DD20221710。
文摘The composition,provenance,and genetic mechanism of sediment on different sedimentary units of the East China Sea(ECS)shelf are essential for understanding the depositional dynamics environment in the ECS.The sediments in the northern ECS shelf are distributed in a ring-shaped distribution centered on the southwestern Cheju Island Mud.From the inside to the outside,the grain size goes from fine to coarse.Aside from the“grain size effect”,hydrodynamic sorting and mineral composition are important restrictions on the content of rare earth elements(REEs).Based on the grain size,REEs,and clay mineral composition of 300 surface sediments,as well as the sedimentary genesis,the northern ECS shelf is divided into three geochemical zones:southwestern Cheju Island Mud Area(ZoneⅠ),Changjiang Shoal Sand Ridges(ZoneⅡ-1),Sand Ridges of the East China Sea shelf(ZoneⅡ-2).The northern ECS shelf is mostly impacted by Chinese mainland rivers(the Changjiang River and Huanghe River),and the provenance and transport mechanism of sediments of different grain sizes is diverse.The bulk sediments come primarily from the Changjiang River,with some material from the Huanghe River carried by the Yellow Sea Coastal Current and the North Jiangsu Coastal Current,and less from Korean rivers.Among them,surface sediments in the southwestern Cheju Island Mud Area(ZoneⅠ)come mostly from the Changjiang River and partly from the Huanghe River.It was formed by the counterclockwise rotating cold eddies in the northern ECS shelf,which caused the sedimentation and accumulation of the fine-grained sediments of the Changjiang River and the Huanghe River.The Changjiang Shoal Sand Ridges(ZoneⅡ-1)were developed during the early-middle Holocene sea-level highstand.It is the modern tidal sand ridge sediment formed by intense hydrodynamic action under the influence of the Yellow Sea Coastal Current,North Jiangsu Coastal Current,and Changjiang Diluted Water.The surface sediments mainly originate from the Changjiang River and Huanghe River,with the Changjiang River dominating,and the Korean River(Hanjiang River)influencing just a few stations.Sand Ridges of the East China Sea shelf(ZoneⅡ-2)are the relict sediments of the paleo-Changjiang River created by sea invasion at the end of the Last Deglaciation in the Epipleistocene.The clay mineral composition of the surface sediments in the study area is just dominated by the Changjiang River,with the North Jiangsu Coastal Current and the Changjiang Diluted Water as the main transporting currents.