In this Letter, we demonstrate that by adjusting the thickness of the buffer layer, the optical responses of a guided-mode resonance filter (GMRF) can be improved for sensor applications. The GMRF is fabricated usin...In this Letter, we demonstrate that by adjusting the thickness of the buffer layer, the optical responses of a guided-mode resonance filter (GMRF) can be improved for sensor applications. The GMRF is fabricated using a replica molding with a plastic substrate and a UV-curable polymer. SiO2 buffer layers of different thicknesses are deposited before the waveguide-layer deposition. The sensitivity of the GMRFs decreases slightly with in- creasing SiO2 layer thickness. By contrast, the full width at half-maximum reduces substantially with increasing SiO2 layer thickness, resulting in the improvement of the overall figure of merit.展开更多
The stress in the thickness direction is an important factor influencing the fracture behavior of structural members. A stress σy tensioned flat plate with edge cracks is widely used as an analysis model. The stress...The stress in the thickness direction is an important factor influencing the fracture behavior of structural members. A stress σy tensioned flat plate with edge cracks is widely used as an analysis model. The stresses σx and σy for the plate model can be acquired from Neuber's solution. However, the solution is applicable only for a perfect plane stress or plane strain state. As a consequence of the thickness of the plate a three-dimensional (3-D) stress state will arise near the crack tip, resulting in a variation of the distribution of σx and σy stresses. A full analysis for the 3-D stress fields for a tensioned flat plate with edge cracks has been therefore carried out. The results show that the 3-D stress field near the crack tip is mainly determined by two factors: the thickness of the plate and the curvature radius at the crack tip. A further analysis has been carried out for the stress intensity near the crack tip. In this paper we give some equations matching to the 3-D stress and stress intensity, which describe precisely the stress state near the crack tip, and which can be applied effectively in engineering analysis.展开更多
基金supported by the National Science Council,Taiwan,China(Grant Nos.NSC 101-2218-E-9-6-MY2and MOST 103-2221-E-009-075)
文摘In this Letter, we demonstrate that by adjusting the thickness of the buffer layer, the optical responses of a guided-mode resonance filter (GMRF) can be improved for sensor applications. The GMRF is fabricated using a replica molding with a plastic substrate and a UV-curable polymer. SiO2 buffer layers of different thicknesses are deposited before the waveguide-layer deposition. The sensitivity of the GMRFs decreases slightly with in- creasing SiO2 layer thickness. By contrast, the full width at half-maximum reduces substantially with increasing SiO2 layer thickness, resulting in the improvement of the overall figure of merit.
基金Supported by the National Natural Science Foundation of China (No. 50078029) and the Research Foundation of the Ministry of Railways and Tsinghua University(RFMOR & THU)(No.T200410)
文摘The stress in the thickness direction is an important factor influencing the fracture behavior of structural members. A stress σy tensioned flat plate with edge cracks is widely used as an analysis model. The stresses σx and σy for the plate model can be acquired from Neuber's solution. However, the solution is applicable only for a perfect plane stress or plane strain state. As a consequence of the thickness of the plate a three-dimensional (3-D) stress state will arise near the crack tip, resulting in a variation of the distribution of σx and σy stresses. A full analysis for the 3-D stress fields for a tensioned flat plate with edge cracks has been therefore carried out. The results show that the 3-D stress field near the crack tip is mainly determined by two factors: the thickness of the plate and the curvature radius at the crack tip. A further analysis has been carried out for the stress intensity near the crack tip. In this paper we give some equations matching to the 3-D stress and stress intensity, which describe precisely the stress state near the crack tip, and which can be applied effectively in engineering analysis.