This study aims to examine the usability of environmentally harmless vegetable oil in the minimum quantity of lubrication(MQL)system in face milling of AISI O2 steel and to optimize the cutting parameters by different...This study aims to examine the usability of environmentally harmless vegetable oil in the minimum quantity of lubrication(MQL)system in face milling of AISI O2 steel and to optimize the cutting parameters by different statistical methods.Vegetable oil was preferred as cutting fluid,and Taguchi method was used in the preparation of the test pattern.After testing with the prepared test pattern,cutting performance in all parameters has been improved according to dry conditions thanks to the MQL system.The highest tool life was obtained by using cutting parameters of 7.5 m cutting length,100 m/min cutting speed,100 mL/h MQL flow rate and 0.1 mm/tooth feed rate.Optimum cutting parameters were determined according to the Taguchi analysis,and the obtained parameters were confirmed with the verification tests.In addition,the optimum test parameter was determined by applying the gray relational analysis method.After using ANOVA analysis according to the measured surface roughness and cutting force values,the most effective cutting parameter was observed to be the feed rate.In addition,the models for surface roughness and cutting force values were obtained with precisions of 99.63%and 99.68%,respectively.Effective wear mechanisms were found to be abrasion and adhesion.展开更多
A method named interval analysis method, which solves the buckling load of composite laminate with uncertainties, is presented. Based on interval mathematics and Taylor series expansion, the interval analysis method i...A method named interval analysis method, which solves the buckling load of composite laminate with uncertainties, is presented. Based on interval mathematics and Taylor series expansion, the interval analysis method is used to deal with uncertainties. Not necessarily knowing the probabilistic statistics characteristics of the uncertain variables, only little information on physical properties of material is needed in the interval analysis method, that is, the upper bound and lower bound of the uncertain variable. So the interval of response of the structure can be gotten through less computational efforts. The interval analysis method is efficient under the condition that probability approach cannot work well because of small samples and deficient statistics characteristics. For buckling load of a special cross-ply laminates and antisymmetric angle-ply laminates with all edges simply supported, calculations and comparisons between interval analysis method and probability method are performed.展开更多
A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications.It was shown in the latter through various comparative physical mode...A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications.It was shown in the latter through various comparative physical models that the ratio approach of identifying the range of the convergence control parameter and also an optimal value for it in the homotopy analysis method is a promising alternative to the classically used h-level curves or to the minimizing the residual(squared)error.A mathematical analysis is targeted here to prove the equivalence of both the ratio approach and the traditional residual approach,especially regarding the root-finding problems via the homotopy analysis method.Examples are provided to further justify this.Moreover,it is conjectured that every nonlinear differential equation can be considered as a root-finding problem by plugging a parameter in it from a physical viewpoint.Two examples from the boundary and initial and value problems are provided to verify this assertion.Hence,besides the advantages as deciphered in the previous publications,the feasibility of the ratio approach over the traditional residual approach is made clearer in this paper.展开更多
Generally, the sequence decision of the development and utilization of Chinese mineral resources is based on national and provincial overall plan of the mineral resources. Such plan usually cannot reflect the relative...Generally, the sequence decision of the development and utilization of Chinese mineral resources is based on national and provincial overall plan of the mineral resources. Such plan usually cannot reflect the relative size of the suitability of the development and utilization of mineral resources. To solve the problem, the paper has selected the gift condition, the market condition, the technological condition,socio-economic condition and environmental condition as the starting-points to analyze the influential factors of the priority-sequence of mineral resources' development and utilization. The above 5 conditions are further specified into 9 evaluative indicators to establish an evaluation indicator system. At last,we propose a decision model of the priority sequence based on grey relational analysis method, and figure out the observation objects by the suitability index of development. Finally, the mineral resources of a certain province in China were analyzed as an example. The calculation results indicate that silver(2.0057), coal(1.9955), zinc(1.9442), cement limestone(1.9077), solvent limestone(1.5624) and other minerals in the province are suitable for development and utilization.展开更多
The great diversity and complexity of geological hazards in terms of flowing materials,environment,triggering mechanisms and physical processes during the flow bring great difficulties to the numerical parameter selec...The great diversity and complexity of geological hazards in terms of flowing materials,environment,triggering mechanisms and physical processes during the flow bring great difficulties to the numerical parameter selection for the discrete element method.In order to identity the significance of individual parameters on the landslides dynamic process and provide valuable contribution to the runout analysis of similar landslide,the dynamic process and associated microscopic mechanism of the Turnoff Creek rock avalanche in Canada are simulated.The present numerical results are compared with the field survey data and the results of depth-integrated continuum method.The final deposit range matches well with the field survey data.It is illustrated that the discrete element method is robust and feasible to capture the dynamic characteristics of large rock avalanche over a complex terrain.Besides,a new method to assess the landslide hazard level based on the discrete element method is proposed.According to the parameter sensitivity analysis,it is demonstrated that the basal friction coefficient and bond strength are essential to the final deposit while rolling coefficient and restitution coefficient have little effects on it.展开更多
In this investigation, optimization of tribological performance parameters of Al-6061T6 alloy reinforced with SiC (15% by weight) and Al2O3 (15% by weight) particulates having particle size of 37 μm each has been pre...In this investigation, optimization of tribological performance parameters of Al-6061T6 alloy reinforced with SiC (15% by weight) and Al2O3 (15% by weight) particulates having particle size of 37 μm each has been presented. The wear and frictional properties of the hybrid metal matrix composites have been studied by performing dry sliding wear test using pin-on-disc wear tester. A L27 orthogonal array is selected for the analysis of the data. From the test results it is observed that sliding distance has the significant contribution in controlling the friction and wear behaviour of hybrid composites. A confirmation test is also carried out to verify the accuracy of the results obtained through the optimization. In addition an optical micrograph test is also performed on the wear tracks to study the wear mechanism.展开更多
Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an effic...Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an efficient way to examine and analyze the accuracy of linear and nonlinear problems.The main aim of this work is to explore the approximate solutions of fuzzy Volterra integral equations(both linear and nonlinear)with a separable kernel via HAM.This method provides a reliable way to ensure the convergence of the approximation series.A new general form of HAM is presented and analyzed in the fuzzy domain.A qualitative convergence analysis based on the graphical method of a fuzzy HAM is discussed.The solutions sought by the proposed method show that the HAM is easy to implement and computationally quite attractive.Some solutions of fuzzy second kind Volterra integral equations are solved as numerical examples to show the potential of the method.The results also show that HAM provides an easy way to control and modify the convergence area in order to obtain accurate solutions.展开更多
This paper mainly describes a new approach to optimizing of the cutting glass fiber with multiple performance characteristics, based on reliability analysis, Taguchi and Grey methods. During the cutting process, the s...This paper mainly describes a new approach to optimizing of the cutting glass fiber with multiple performance characteristics, based on reliability analysis, Taguchi and Grey methods. During the cutting process, the speed, the volume and the cutting load are optimized cutting parameters when the performance characteristics, which include Weibull modulus and blade wear, are taken into consideration. In this paper, optimization with multiple performance characteristics is found to be the highest cutting speed and the smallest cutting volume, and the medium cutting load. An analysis of the variance of the blade wear indicates that the cutting speed (47.21%), the cutting volume (14.62%) and the cutting load (12.20%) are the most significant parameters in the cutting process of glass fibers. In summary, the most optimal cutting parameter should be A3B1C2. The results of experiments have shown that the multiple performance characteristics of cutting glass fiber are improved effectively through this approach.展开更多
A rigorous back analysis of shear strength parameters of landslide slip was presented. Kinematical element method was adopted to determine factor of safety and critical failure surface, which overcomes the disadvantag...A rigorous back analysis of shear strength parameters of landslide slip was presented. Kinematical element method was adopted to determine factor of safety and critical failure surface, which overcomes the disadvantage of limit equilibrium method. The theoretical relationship between the combination of shear strength parameters and stability state was studied. The results show that the location of critical slip surface, F/tan f and F/c depend only on the value of c/tan f. The failure surface moves towards the inside of slope as c/tan f increases. According to the information involving factor of safety and critical failure surface in a specific cross-section, strength parameters can be back calculated based on the above findings. Three examples were given for demonstrating the validity of the present method. The shear strength parameters obtained by back analysis are almost consistent with their correct solutions or test results.展开更多
Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained fr...Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.展开更多
A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) proble...A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.展开更多
Sensitivity analysis (SA) is an effective tool for studying crop models; it is an important link in model localization and plays an important role in crop model calibration and application. The objectives were to (...Sensitivity analysis (SA) is an effective tool for studying crop models; it is an important link in model localization and plays an important role in crop model calibration and application. The objectives were to (i) determine influential and non-influential parameters with respect to above ground biomass (AGB), canopy cover (CC), and grain yield of winter wheat in the Beijing area based on the AquaCrop model under different water treatments (rainfall, normal irrigation, and over-irrigation); and (ii) generate an AquaCrop model that can be used in the Beijing area by setting non-influential parameters to fixed values and adjusting influential parameters according to the SA results. In this study, field experiments were conducted during the 2012-2013,2013-2014, and 2014-2015 winter wheat growing seasons at the National Precision Agriculture Demonstration Research Base in Beijing, China. The extended Fourier amplitude sensitivity test (EFAST) method was used to perform SA of the AquaCrop model using 42 crop parameters, in order to verify the SA results, data from the 2013-2014 growing season were used to calibrate the AquaCrop model, and data from 2012-2013 and 2014-2015 growing seasons were val- idated. For AGB and yield of winter wheat, the total order sensitivity analysis had more sensitive parameters than the first order sensitivity analysis. For the AGB time-series, parameter sensitivity was changed under different water treatments; in comparison with the non-stressful conditions (normal irrigation and over-irrigation), there were more sensitive parameters under water stress (rainfall), while root development parameters were more sensitive. For CC with time-series and yield, there were more sensitive parameters under water stress than under no water stress. Two parameters sets were selected to calibrate the AquaCrop model, one group of parameters were under water stress, and the others were under no water stress, there were two more sensitive parameters (growing degree-days (GDD) from sowing to the maximum rooting depth (root) and the maximum effective rooting depth (rtx)) under water stress than under no water stress. The results showed that there was higher accuracy under water stress than under no water stress. This study provides guidelines for AquaCrop model calibration and application in Beijing, China, as well providing guidance to simplify the AquaCrop model and improve its precision, especially when many parameters are used.展开更多
A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue...A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.展开更多
Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduce...Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.展开更多
The differential evolution(DE)algorithm was deployed to calibrate microparameters of the DEM cohesive granular material.4 macroparameters,namely,uniaxial compressive strength,direct tensile strength,Young’s modulus a...The differential evolution(DE)algorithm was deployed to calibrate microparameters of the DEM cohesive granular material.4 macroparameters,namely,uniaxial compressive strength,direct tensile strength,Young’s modulus and Poisson’s ratio,can be calibrated to high accuracy.The best calibration accuracy could reach the sum of relative errors RE_(sum)<0.1%.Most calibrations can be achieved with RE_(sum)<5%within hours or RE_(sum)<1%within 2 days.Based on the calibrated results,microparameters uniqueness analysis was carried out to reveal the correlation between microparameters and the macroscopic mechanical behaviour of material:(1)microparameters effective modulus,tensile strength and normal-to-shear stiffness ratio control the elastic behaviour and stable crack growth,(2)microparameters cohesion and friction angles present a negative linear correlation that controls the axial strain and lateral strain prior to the peak stress,and(3)microparameters friction coefficient controls shear crack friction and slip mainly refers to the unstable crack behaviour.Consideration of more macroparameters to regulate the material mechanical behaviour that is dominated by shear crack and slip motion is highlighted for future study.The DE calibration method is expected to serve as an alternative method to calibrate the DEM cohesive granular material to its peak strength.展开更多
The PDFs(probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random ...The PDFs(probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA(2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship’s manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.展开更多
The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of cu...The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of currently available group contribution(GC)methods for HSP were evaluated and found to be insufficient for computer-aided product design(CAPD)of paints and coatings.A revised and,for this purpose,improved GC method is presented for estimating HSP of organic compounds,intended for organic pigments.Due to the significant limitations of GC methods,an uncertainty analysis and parameter confidence intervals are provided in order to better quantify the estimation accuracy of the proposed approach.Compared to other applicable GC methods,the prediction error is reduced significantly with average absolute errors of 0.45 MPa^(1/2),1.35 MPa^(1/2),and 1.09 MPa^(1/2) for the partial dispersion(δD),polar(δP)and hydrogen-bonding(δH)solubility parameters respectively for a database of 1106 compounds.The performance for organic pigments is comparable to the overall method performance,with higher average errors forδD and lower average errors forδP andδH.展开更多
The [α/Fe] ratios in stars are good tracers to probe the formation history of stellar populations and the chemical evolution of the Galaxy. The spectroscopic survey of LAMOST provides a good opportunity to determine ...The [α/Fe] ratios in stars are good tracers to probe the formation history of stellar populations and the chemical evolution of the Galaxy. The spectroscopic survey of LAMOST provides a good opportunity to determine [α/Fe] of millions of stars in the Galaxy. We present a method of measuring the [α/Fe]ratios from LAMOST spectra using the template-matching technique of the LSP3 pipeline. We use three test samples of stars selected from the ELODIE and MILES libraries, as well as the LEGUE survey to validate our method. Based on the test results, we conclude that our method is valid for measuring [α/Fe]from low-resolution spectra acquired by the LAMOST survey. Within the range of the stellar parameters Teff= [5000, 7500] K, log g = [1.0, 5.0] dex and [Fe/H]= [onsistent with values derived from high-resolution spectra,-1.5, +0.5] dex, our [α/Fe] measurements are c and the accuracy of our [α/Fe] measurements from LAMOST spectra is better than 0.1 dex with spectral signal-to-noise higher than 20.展开更多
This study investigated multi-response optimization of the pulse metal active gas-tungsten inert gas( PMAG-TIG) twin arc hybrid root welding process for an optimal parametric combination to yield favorable back bead g...This study investigated multi-response optimization of the pulse metal active gas-tungsten inert gas( PMAG-TIG) twin arc hybrid root welding process for an optimal parametric combination to yield favorable back bead geometry of welded joints using grey relational analysis and Taguchi method.Eighteen experimental runs based on an orthogonal array following the Taguchi method were performed to derive objective functions to be optimized within the experimental domain.The objective functions were selected in relation to parameters of PMAG-TIG twin arc root welding back bead geometry: back bead width to root reinforcement ratio and deposited metal height.The Taguchi approach was followed by grey relational analysis to solve the multi-response optimization problem.The significance of factors on overall quality characteristics of the weld joint was also evaluated quantitatively using analysis of variance.Optimal results were verified through additional experiments,and showed to feasibility of applying grey relation analysis in combination with Taguchi technique for continuous improvement of product quality in the manufacturing industry.展开更多
The Chinese Space Station Telescope(CSST)spectroscopic survey aims to deliver high-quality low-resolution(R>200)slitless spectra for hundreds of millions of targets down to a limiting magnitude of about 21 mag,dist...The Chinese Space Station Telescope(CSST)spectroscopic survey aims to deliver high-quality low-resolution(R>200)slitless spectra for hundreds of millions of targets down to a limiting magnitude of about 21 mag,distributed within a large survey area(17500 deg2)and covering a wide wavelength range(255-1000 nm by three bands GU,GV,and GI).As slitless spectroscopy precludes the usage of wavelength calibration lamps,wavelength calibration is one of the most challenging issues in the reduction of slitless spectra,yet it plays a key role in measuring precise radial velocities of stars and redshifts of galaxies.In this work,we propose a star-based method that can monitor and correct for possible errors in the CSST wavelength calibration using normal scientific observations,taking advantage of the facts that(ⅰ)there are about ten million stars with reliable radial velocities now available thanks to spectroscopic surveys like LAMOST,(ⅱ)the large field of view of CSST enables efficient observations of such stars in a short period of time,and(ⅲ)radial velocities of such stars can be reliably measured using only a narrow segment of CSST spectra.We demonstrate that it is possible to achieve a wavelength calibration precision of a few km s^(-1) for the GU band,and about 10 to 20 kms^(-1) for the GV and GI bands,with only a few hundred velocity standard stars.Implementations of the method to other surveys are also discussed.展开更多
文摘This study aims to examine the usability of environmentally harmless vegetable oil in the minimum quantity of lubrication(MQL)system in face milling of AISI O2 steel and to optimize the cutting parameters by different statistical methods.Vegetable oil was preferred as cutting fluid,and Taguchi method was used in the preparation of the test pattern.After testing with the prepared test pattern,cutting performance in all parameters has been improved according to dry conditions thanks to the MQL system.The highest tool life was obtained by using cutting parameters of 7.5 m cutting length,100 m/min cutting speed,100 mL/h MQL flow rate and 0.1 mm/tooth feed rate.Optimum cutting parameters were determined according to the Taguchi analysis,and the obtained parameters were confirmed with the verification tests.In addition,the optimum test parameter was determined by applying the gray relational analysis method.After using ANOVA analysis according to the measured surface roughness and cutting force values,the most effective cutting parameter was observed to be the feed rate.In addition,the models for surface roughness and cutting force values were obtained with precisions of 99.63%and 99.68%,respectively.Effective wear mechanisms were found to be abrasion and adhesion.
文摘A method named interval analysis method, which solves the buckling load of composite laminate with uncertainties, is presented. Based on interval mathematics and Taylor series expansion, the interval analysis method is used to deal with uncertainties. Not necessarily knowing the probabilistic statistics characteristics of the uncertain variables, only little information on physical properties of material is needed in the interval analysis method, that is, the upper bound and lower bound of the uncertain variable. So the interval of response of the structure can be gotten through less computational efforts. The interval analysis method is efficient under the condition that probability approach cannot work well because of small samples and deficient statistics characteristics. For buckling load of a special cross-ply laminates and antisymmetric angle-ply laminates with all edges simply supported, calculations and comparisons between interval analysis method and probability method are performed.
文摘A ratio approach based on the simple ratio test associated with the terms of homotopy series was proposed by the author in the previous publications.It was shown in the latter through various comparative physical models that the ratio approach of identifying the range of the convergence control parameter and also an optimal value for it in the homotopy analysis method is a promising alternative to the classically used h-level curves or to the minimizing the residual(squared)error.A mathematical analysis is targeted here to prove the equivalence of both the ratio approach and the traditional residual approach,especially regarding the root-finding problems via the homotopy analysis method.Examples are provided to further justify this.Moreover,it is conjectured that every nonlinear differential equation can be considered as a root-finding problem by plugging a parameter in it from a physical viewpoint.Two examples from the boundary and initial and value problems are provided to verify this assertion.Hence,besides the advantages as deciphered in the previous publications,the feasibility of the ratio approach over the traditional residual approach is made clearer in this paper.
基金Financial support from the key project of the National Natural Science Foundation of China(No.71273118)is gratefully acknowledged
文摘Generally, the sequence decision of the development and utilization of Chinese mineral resources is based on national and provincial overall plan of the mineral resources. Such plan usually cannot reflect the relative size of the suitability of the development and utilization of mineral resources. To solve the problem, the paper has selected the gift condition, the market condition, the technological condition,socio-economic condition and environmental condition as the starting-points to analyze the influential factors of the priority-sequence of mineral resources' development and utilization. The above 5 conditions are further specified into 9 evaluative indicators to establish an evaluation indicator system. At last,we propose a decision model of the priority sequence based on grey relational analysis method, and figure out the observation objects by the suitability index of development. Finally, the mineral resources of a certain province in China were analyzed as an example. The calculation results indicate that silver(2.0057), coal(1.9955), zinc(1.9442), cement limestone(1.9077), solvent limestone(1.5624) and other minerals in the province are suitable for development and utilization.
基金Financial support from the National Natural Science Foundation of China(Grant No.41520104002,41572303)the Strategic Priority Research Program of CAS(Grant No.XDA23090303)the National Key Research and Development Program of China(Project No.2017YFC1501000)。
文摘The great diversity and complexity of geological hazards in terms of flowing materials,environment,triggering mechanisms and physical processes during the flow bring great difficulties to the numerical parameter selection for the discrete element method.In order to identity the significance of individual parameters on the landslides dynamic process and provide valuable contribution to the runout analysis of similar landslide,the dynamic process and associated microscopic mechanism of the Turnoff Creek rock avalanche in Canada are simulated.The present numerical results are compared with the field survey data and the results of depth-integrated continuum method.The final deposit range matches well with the field survey data.It is illustrated that the discrete element method is robust and feasible to capture the dynamic characteristics of large rock avalanche over a complex terrain.Besides,a new method to assess the landslide hazard level based on the discrete element method is proposed.According to the parameter sensitivity analysis,it is demonstrated that the basal friction coefficient and bond strength are essential to the final deposit while rolling coefficient and restitution coefficient have little effects on it.
文摘In this investigation, optimization of tribological performance parameters of Al-6061T6 alloy reinforced with SiC (15% by weight) and Al2O3 (15% by weight) particulates having particle size of 37 μm each has been presented. The wear and frictional properties of the hybrid metal matrix composites have been studied by performing dry sliding wear test using pin-on-disc wear tester. A L27 orthogonal array is selected for the analysis of the data. From the test results it is observed that sliding distance has the significant contribution in controlling the friction and wear behaviour of hybrid composites. A confirmation test is also carried out to verify the accuracy of the results obtained through the optimization. In addition an optical micrograph test is also performed on the wear tracks to study the wear mechanism.
基金Dr.Ali Jameel and Noraziah Man are very grateful to the Ministry of Higher Education of Malaysia for providing them with the Fundamental Research Grant Scheme(FRGS)S/O No.14188 that supported this research.
文摘Homotopy Analysis Method(HAM)is semi-analytic method to solve the linear and nonlinear mathematical models which can be used to obtain the approximate solution.The HAM includes an auxiliary parameter,which is an efficient way to examine and analyze the accuracy of linear and nonlinear problems.The main aim of this work is to explore the approximate solutions of fuzzy Volterra integral equations(both linear and nonlinear)with a separable kernel via HAM.This method provides a reliable way to ensure the convergence of the approximation series.A new general form of HAM is presented and analyzed in the fuzzy domain.A qualitative convergence analysis based on the graphical method of a fuzzy HAM is discussed.The solutions sought by the proposed method show that the HAM is easy to implement and computationally quite attractive.Some solutions of fuzzy second kind Volterra integral equations are solved as numerical examples to show the potential of the method.The results also show that HAM provides an easy way to control and modify the convergence area in order to obtain accurate solutions.
文摘This paper mainly describes a new approach to optimizing of the cutting glass fiber with multiple performance characteristics, based on reliability analysis, Taguchi and Grey methods. During the cutting process, the speed, the volume and the cutting load are optimized cutting parameters when the performance characteristics, which include Weibull modulus and blade wear, are taken into consideration. In this paper, optimization with multiple performance characteristics is found to be the highest cutting speed and the smallest cutting volume, and the medium cutting load. An analysis of the variance of the blade wear indicates that the cutting speed (47.21%), the cutting volume (14.62%) and the cutting load (12.20%) are the most significant parameters in the cutting process of glass fibers. In summary, the most optimal cutting parameter should be A3B1C2. The results of experiments have shown that the multiple performance characteristics of cutting glass fiber are improved effectively through this approach.
基金Project(51174228)supported by the National Natural Science Foundation of ChinaProject(CX2012B069)supported by Hunan Provincial Innovation Foundation for PostgraduateProject(201003)supported by Transportation Science and Technology Projects of Hunan Province,China
文摘A rigorous back analysis of shear strength parameters of landslide slip was presented. Kinematical element method was adopted to determine factor of safety and critical failure surface, which overcomes the disadvantage of limit equilibrium method. The theoretical relationship between the combination of shear strength parameters and stability state was studied. The results show that the location of critical slip surface, F/tan f and F/c depend only on the value of c/tan f. The failure surface moves towards the inside of slope as c/tan f increases. According to the information involving factor of safety and critical failure surface in a specific cross-section, strength parameters can be back calculated based on the above findings. Three examples were given for demonstrating the validity of the present method. The shear strength parameters obtained by back analysis are almost consistent with their correct solutions or test results.
基金supported by the National Natural Science Foundation of China(Grant No.51579193)the Science and Technology Planning Project of Guizhou Province(Grant No.[2016]1154)
文摘Due to the size effects of rockfill materials, the settlement difference between numerical simulation and in situ monitoring of rockfill dams is a topic of general concern.The constitutive model parameters obtained from laboratory triaxial tests often underestimate the deformation of high rockfill dams.Therefore, constitutive model parameters obtained by back analysis were used to calculate and predict the long-term deformation of rockfill dams.Instead of using artificial neural networks (ANNs), the response surface method (RSM) was employed to replace the finite element simulation used in the optimization iteration.Only 27 training samples were required for RSM, improving computational efficiency compared with ANN, which required 300 training samples.RSM can be used to describe the relationship between the constitutive model parameters and dam settlements.The inversion results of the Shuibuya concrete face rockfill dam (CFRD) show that the calculated settlements agree with the measured data, indicating the accuracy and efficiency of RSM.
基金supported by the National Natural Science Foundation of China(51375389)
文摘A proper weapon system is very important for a na- tional defense system. Generally, it means selecting the optimal weapon system among many alternatives, which is a multiple- attribute decision making (MADM) problem. This paper proposes a new mathematical model based on the response surface method (RSM) and the grey relational analysis (GRA). RSM is used to obtain the experimental points and analyze the factors that have a significant impact on the selection results. GRA is used to an- alyze the trend relationship between alternatives and reference series. And then an RSM model is obtained, which can be used to calculate all alternatives and obtain ranking results. A real world application is introduced to illustrate the utilization of the model for the weapon selection problem. The results show that this model can be used to help decision-makers to make a quick comparison of alternatives and select a proper weapon system from multiple alternatives, which is an effective and adaptable method for solving the weapon system selection problem.
基金supported by the National Natural Science Foundation of China(41571416)the Natural Science Foundation of Beijing,China(4152019)the Beijing Academy of Agricultural and Forestry Sciences Innovation Capacity Construction Specific Projects,China(KJCX20150409)
文摘Sensitivity analysis (SA) is an effective tool for studying crop models; it is an important link in model localization and plays an important role in crop model calibration and application. The objectives were to (i) determine influential and non-influential parameters with respect to above ground biomass (AGB), canopy cover (CC), and grain yield of winter wheat in the Beijing area based on the AquaCrop model under different water treatments (rainfall, normal irrigation, and over-irrigation); and (ii) generate an AquaCrop model that can be used in the Beijing area by setting non-influential parameters to fixed values and adjusting influential parameters according to the SA results. In this study, field experiments were conducted during the 2012-2013,2013-2014, and 2014-2015 winter wheat growing seasons at the National Precision Agriculture Demonstration Research Base in Beijing, China. The extended Fourier amplitude sensitivity test (EFAST) method was used to perform SA of the AquaCrop model using 42 crop parameters, in order to verify the SA results, data from the 2013-2014 growing season were used to calibrate the AquaCrop model, and data from 2012-2013 and 2014-2015 growing seasons were val- idated. For AGB and yield of winter wheat, the total order sensitivity analysis had more sensitive parameters than the first order sensitivity analysis. For the AGB time-series, parameter sensitivity was changed under different water treatments; in comparison with the non-stressful conditions (normal irrigation and over-irrigation), there were more sensitive parameters under water stress (rainfall), while root development parameters were more sensitive. For CC with time-series and yield, there were more sensitive parameters under water stress than under no water stress. Two parameters sets were selected to calibrate the AquaCrop model, one group of parameters were under water stress, and the others were under no water stress, there were two more sensitive parameters (growing degree-days (GDD) from sowing to the maximum rooting depth (root) and the maximum effective rooting depth (rtx)) under water stress than under no water stress. The results showed that there was higher accuracy under water stress than under no water stress. This study provides guidelines for AquaCrop model calibration and application in Beijing, China, as well providing guidance to simplify the AquaCrop model and improve its precision, especially when many parameters are used.
基金supported by the National Special Fund for Major Research Instrument Development(2011YQ140145)111 Project(B07009)+1 种基金the National Natural Science Foundation of China(11002013)Defense Industrial Technology Development Program(A2120110001 and B2120110011)
文摘A new numerical technique named as fuzzy finite difference method is proposed to solve the heat conduction problems with fuzzy uncertainties in both the phys- ical parameters and initial/boundary conditions. In virtue of the level-cut method, the difference discrete equations with fuzzy parameters are equivalently transformed into groups of interval equations. New stability analysis theory suited to fuzzy difference schemes is developed. Based on the parameter perturbation method, the interval ranges of the uncertain temperature field can be approximately predicted. Subsequently, fuzzy solutions to the original difference equations are obtained by the fuzzy resolution theorem. Two numerical examples are given to demonstrate the feasibility and efficiency of the presented method for solving both steady-state and transient heat conduction problems.
基金Projects(51708558,51878673,U1734208,52078485,U1934217,U1934209)supported by the National Natural Science Foundation of ChinaProject(2020JJ5740)supported by the Natural Science Foundation of Hunan Province,China+1 种基金Project(KF2020-03)supported by the Key Open Fund of State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,ChinaProject(2020-Special-02)supported by the Science and Technology Research and Development Program of China Railway Group Limited。
文摘Random dynamic responses caused by the uncertainty of structural parameters of the coupled train-ballasted track-subgrade system under train loading can pose safety concerns to the train operation.This paper introduced a computational model for analyzing probabilistic dynamic responses of three-dimensional(3D)coupled train-ballasted track-subgrade system(TBTSS),where the coupling effects of uncertain rail irregularities,stiffness and damping properties of ballast and subgrade layers were simultaneously considered.The number theoretical method(NTM)was employed to design discrete points for the multi-dimensional stochastic parameters.The time-histories of stochastic dynamic vibrations of the TBSS with systematically uncertain structural parameters were calculated accurately and efficiently by employing the probability density evolution method(PDEM).The model-predicted results were consistent with those by the Monte Carlo simulation method.A sensitivity study was performed to assess the relative importance of those uncertain structural parameters,based on which a case study was presented to explore the stochastic probability evolution mechanism of such train-ballasted track-subgrade system.
文摘The differential evolution(DE)algorithm was deployed to calibrate microparameters of the DEM cohesive granular material.4 macroparameters,namely,uniaxial compressive strength,direct tensile strength,Young’s modulus and Poisson’s ratio,can be calibrated to high accuracy.The best calibration accuracy could reach the sum of relative errors RE_(sum)<0.1%.Most calibrations can be achieved with RE_(sum)<5%within hours or RE_(sum)<1%within 2 days.Based on the calibrated results,microparameters uniqueness analysis was carried out to reveal the correlation between microparameters and the macroscopic mechanical behaviour of material:(1)microparameters effective modulus,tensile strength and normal-to-shear stiffness ratio control the elastic behaviour and stable crack growth,(2)microparameters cohesion and friction angles present a negative linear correlation that controls the axial strain and lateral strain prior to the peak stress,and(3)microparameters friction coefficient controls shear crack friction and slip mainly refers to the unstable crack behaviour.Consideration of more macroparameters to regulate the material mechanical behaviour that is dominated by shear crack and slip motion is highlighted for future study.The DE calibration method is expected to serve as an alternative method to calibrate the DEM cohesive granular material to its peak strength.
基金financially supported by the Project of"Nonlinear Wave Excitation and Response of Surface Vehicle"(Grant No.B2420132001)the Natural Science Foundation of Tianjin(Grant No.15JCQNJC07700)
文摘The PDFs(probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA(2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship’s manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.
基金Financial support from the Sino-Danish Center for Education and Research(SDC)the Hempel Foundation to CoaST(The Hempel Foundation Coatings Science and Technology Centre)Hempel A/S。
文摘The Hansen solubility parameters(HSP)are frequently used for solvent selection and characterization of polymers,and are directly related to the suspension behavior of pigments in solvent mixtures.The performance of currently available group contribution(GC)methods for HSP were evaluated and found to be insufficient for computer-aided product design(CAPD)of paints and coatings.A revised and,for this purpose,improved GC method is presented for estimating HSP of organic compounds,intended for organic pigments.Due to the significant limitations of GC methods,an uncertainty analysis and parameter confidence intervals are provided in order to better quantify the estimation accuracy of the proposed approach.Compared to other applicable GC methods,the prediction error is reduced significantly with average absolute errors of 0.45 MPa^(1/2),1.35 MPa^(1/2),and 1.09 MPa^(1/2) for the partial dispersion(δD),polar(δP)and hydrogen-bonding(δH)solubility parameters respectively for a database of 1106 compounds.The performance for organic pigments is comparable to the overall method performance,with higher average errors forδD and lower average errors forδP andδH.
基金supported by the National Key Basic Research Program of China(973Program,No.2014CB845700)the National Natural Science Foundation of China(Grant Nos.U1331120,U1431106,U1531118,U1531244 and 11473001)+1 种基金The Guo Shou Jing Telescope(the Large Sky Area MultiObject Fiber Spectroscopic Telescope,LAMOST)is aNational Major Scientific Project built by the Chinese Academy of Sciencesprovided by the National Development and Reform Commission.LAMOST is operated and managed by National Astronomical Observatories,Chinese Academy of Sciences
文摘The [α/Fe] ratios in stars are good tracers to probe the formation history of stellar populations and the chemical evolution of the Galaxy. The spectroscopic survey of LAMOST provides a good opportunity to determine [α/Fe] of millions of stars in the Galaxy. We present a method of measuring the [α/Fe]ratios from LAMOST spectra using the template-matching technique of the LSP3 pipeline. We use three test samples of stars selected from the ELODIE and MILES libraries, as well as the LEGUE survey to validate our method. Based on the test results, we conclude that our method is valid for measuring [α/Fe]from low-resolution spectra acquired by the LAMOST survey. Within the range of the stellar parameters Teff= [5000, 7500] K, log g = [1.0, 5.0] dex and [Fe/H]= [onsistent with values derived from high-resolution spectra,-1.5, +0.5] dex, our [α/Fe] measurements are c and the accuracy of our [α/Fe] measurements from LAMOST spectra is better than 0.1 dex with spectral signal-to-noise higher than 20.
基金supported by the National Natural Science Foundation of China(Grant No.11375038)Science Fund for Creative Research Groups of NSFC(Grant No.51621064)
文摘This study investigated multi-response optimization of the pulse metal active gas-tungsten inert gas( PMAG-TIG) twin arc hybrid root welding process for an optimal parametric combination to yield favorable back bead geometry of welded joints using grey relational analysis and Taguchi method.Eighteen experimental runs based on an orthogonal array following the Taguchi method were performed to derive objective functions to be optimized within the experimental domain.The objective functions were selected in relation to parameters of PMAG-TIG twin arc root welding back bead geometry: back bead width to root reinforcement ratio and deposited metal height.The Taguchi approach was followed by grey relational analysis to solve the multi-response optimization problem.The significance of factors on overall quality characteristics of the weld joint was also evaluated quantitatively using analysis of variance.Optimal results were verified through additional experiments,and showed to feasibility of applying grey relation analysis in combination with Taguchi technique for continuous improvement of product quality in the manufacturing industry.
基金supported by the National Key Basic R&D Program of China(2019YFA0405500)the National Natural Science Foundation of China(No.11603002)Beijing Normal University(No.310232102)。
文摘The Chinese Space Station Telescope(CSST)spectroscopic survey aims to deliver high-quality low-resolution(R>200)slitless spectra for hundreds of millions of targets down to a limiting magnitude of about 21 mag,distributed within a large survey area(17500 deg2)and covering a wide wavelength range(255-1000 nm by three bands GU,GV,and GI).As slitless spectroscopy precludes the usage of wavelength calibration lamps,wavelength calibration is one of the most challenging issues in the reduction of slitless spectra,yet it plays a key role in measuring precise radial velocities of stars and redshifts of galaxies.In this work,we propose a star-based method that can monitor and correct for possible errors in the CSST wavelength calibration using normal scientific observations,taking advantage of the facts that(ⅰ)there are about ten million stars with reliable radial velocities now available thanks to spectroscopic surveys like LAMOST,(ⅱ)the large field of view of CSST enables efficient observations of such stars in a short period of time,and(ⅲ)radial velocities of such stars can be reliably measured using only a narrow segment of CSST spectra.We demonstrate that it is possible to achieve a wavelength calibration precision of a few km s^(-1) for the GU band,and about 10 to 20 kms^(-1) for the GV and GI bands,with only a few hundred velocity standard stars.Implementations of the method to other surveys are also discussed.