During the course of a major sandstorm from April 17 to April 23, 2008 in the Taklimakan Desert, data pertaining to the mass concentrations of different-sized atmospheric particulate matter were observed continuously ...During the course of a major sandstorm from April 17 to April 23, 2008 in the Taklimakan Desert, data pertaining to the mass concentrations of different-sized atmospheric particulate matter were observed continuously with Grimm 1.108, Thermo RP 1400a, TSP, and CAWS-600 instruments. The results showed that: (1) during the entire sandstorm process there were some dif- ferences between the daily mean particle concentration peaks and the hourly mean particle concentration peaks because the actual sandstorm lasted for only about 4 hr, whereas more particles were accumulated in the floating dust days before and after the actual sandstorm; (2) the intensity of the sandstorm was enhanced with the increase of wind speed, and this was related to the peak mass concentrations of atmospheric particulate matter; the wind speed directly affected the concentration of atmospheric particulate matter: the higher the wind speed, the higher the mass concentration (〉0.23 μm was 39,496.5 μg/m^3, and 〉20.0 μm was 5,390.7μg/m^3); (3) the concentration changes of PM10 and TSP were also related to the course and intensity of the sandstorm; and (4) the mass concentration of atmospheric particulate matter had the following sequence during the dust weather: clear day 〈 floating dust 〈 floating and blowing dust 〈 sandstorm. Temperature, relative humidity, and barometric pressure are important factors affecting the strength of storms, which could also indirectly affect the concentration change of atmospheric particulate matter.展开更多
Incineration is an effective way of health care waste management, but it is also a source of air pollution. Thermal decomposition of organic and inorganic waste during incineration releases a large concentration of ai...Incineration is an effective way of health care waste management, but it is also a source of air pollution. Thermal decomposition of organic and inorganic waste during incineration releases a large concentration of air pollutants such as CO, SO<sub>2</sub>, NOx, CO<sub>2</sub> and particulate matter (PM). A cross sectional-descriptive study was conducted to determine the short-term variations in PM concentrations across various areas in the vicinity of a local incinerator in Windhoek, Namibia. XRF Qualitative analysis method was used to determine the elemental composition of fallout dust concentration from six study areas/stations in the vicinity of a local incinerator. Single bucket fallout monitors were deployed following the American Society for Testing and Materials standard method for collection and analysis of dust fallout to determine the elemental composition of fallout dust. Real-time PM concentration trends were also recorded using a portable Micro dust Pro Real-time Dust Monitor for PM10 at a height of 2.2 m above the ground. High PM concentration peaks were observed in the morning and afternoon hours at varying points. The fallout dust rate ranged between highest 1839.3 mg/m2/day at sampling Point 4 and lowest 711 mg/m2/day at sampling Point 2. The XRF analysis revealed the presence of toxic elements and crustal elements in order of decreasing abundance: Mn > Zn > Cr > V > Zr > Sr > Pb > Ni and SI > K > Fe > Ti > Ca > Al > P respectively. Highest elemental composition concentrations were found at sampling location in the vicinity of the incinerator and in industrial area.展开更多
Indoor air quality has a direct impact on human health. Indoor air quality has aroused great concern. This experimental study compares the effects of different water humidification on the indoor particulate pollution ...Indoor air quality has a direct impact on human health. Indoor air quality has aroused great concern. This experimental study compares the effects of different water humidification on the indoor particulate pollution characteristics, and analyzes the mass concentration and the particulate number concentration distribution of different sizes of particulates with time under each condition of the purified water humidification, the tap water humidification and the cold boiled water humidification in the office. The results show that under the three kinds of wetting conditions, the concentration of the fine particulates is higher. More minerals are contained in the tap water and the cold boiled water, so the two kinds of humidification have more significant impact on indoor particulate matter. But the purified water humidification has nearly no significant effect on it. The calcium and magnesium ionic compounds are partly removed after the water boiled, so the cold boiled water humidification has less impact on the indoor particulate matter than the tap water humidification. The mass concentration and particulate number concentration of the particle may also be affected due to the frequency of ultrasonic vibration.展开更多
This study constructs a quasi-natural experiment based on the expansion of the Yangtze River Delta urban agglomeration(YRDUA) of China in 2010 to investigate the impact and inner mechanism of urban agglomeration expan...This study constructs a quasi-natural experiment based on the expansion of the Yangtze River Delta urban agglomeration(YRDUA) of China in 2010 to investigate the impact and inner mechanism of urban agglomeration expansion on fine particulate matter(PM_(2.5)) concentrations through propensity scores in difference-in-differences models(PSM-DID) using panel data from 286 prefecturelevel cities in China from 2003 to 2016. The results show that 1) urban agglomeration expansion contributes to an overall decrease in PM_(2.5)concentration, which is mainly achieved from the original cities. For the new cities, on the other hand, the expansion significantly increases the local PM_(2.5)concentration. 2) In the long term, the significant influence of urban agglomeration expansion on PM_(2.5)concentration lasts for three years and gradually decreases. A series of robustness tests confirm the applicability of the PSM-DID model.3) Cities with weaker government regulation, a better educated population and higher per capita income present stronger PM_(2.5)reduction effects. 4) Urban agglomeration expansion affects the PM_(2.5)concentration mainly through industrial transfer and population migration, which cause a decrease in the PM_(2.5)concentration in the original cities and an increase in the PM_(2.5)concentration in the new cities.Corresponding policy suggestions are proposed based on the conclusions.展开更多
Magnetic plant biomonitoring has been proven to be an effective tool in the assessment of air quality. Kuwait presents a unique environment due to its dry desert climatic conditions and prevailing dry deposition patte...Magnetic plant biomonitoring has been proven to be an effective tool in the assessment of air quality. Kuwait presents a unique environment due to its dry desert climatic conditions and prevailing dry deposition patterns that may affect accumulation rates of magnetic mineral particles. This study evaluated two widely distributed ornamental species, buttonwood (Conocarpus erectus) and palm (Phoenix dactylifera) for their effectiveness as biomagnetic monitors over three different land use classes (urban, suburban and industrial land classes). The differences between land use classes were classified by their proximity to major pollution sources as well as population density. Leaf sampling was conducted over various heights and distances from the nearest road. Total leaf saturated isothermal magnetization (SIRM), hard isothermal magnetization (HIRM), hard isothermal magnetization percentage (HIRM%) and s-ratio have been measured. Scanning electron microscopy (SEM) was used to analyze leaf surface micromorphology. It was determined that NRM values are similar for all land use classes and species, ranging from 0.3 to 0.5 μA. Palm leaf overall magnetic concentration was identified to be higher at the industrial land use class than at the urban land use class, indicating high coercivity minerals to magnetically dominate the land use classes. Additionally, total leaf SIRM was determined to be higher at short distances of 0 - 5 meters from the vicinity of the road. The surface rugosity of palm has deep ridges and furrows with ununiform wax projections across the leaf surface, while buttonwood has a smooth wax film with low relief. Differences in leaf micromorphology in addition to plant physiology, justify species magnetic parametric variances. Palm leaf had an average SIRM value that is 120% higher than buttonwood. It has been highlighted that through the application of the magnetic parameter results to spatial distribution maps that there is an association between particulate matter (PM) and the locality of main roads and local services that may experience higher intensities of traffic.展开更多
This study focused on the contents of the air particulate matter pollution in two districts of Ulaanbaatar and determined the chemical composition of air borne samples and the source of those particles. Samples of fin...This study focused on the contents of the air particulate matter pollution in two districts of Ulaanbaatar and determined the chemical composition of air borne samples and the source of those particles. Samples of fine and coarse fractions of PM were collected using a “Gent” stacked filter unit in two fractions of 0 - 2.2 μm and 2.2 - 10 μm sizes in two semi-residential areas from September 2012 to August 2013. This paper points out that fine and coarse concentration varied seasonally with meteorological changes. In sampling site 3, Zuun Ail (Figure 1) combustion generators generate the majority of pollution around 50.6% of household waste furnace to create high-temperature combustion of 21.6%. However, this net contributes to soil contamination near the lower value (5%) that arises around the vacuum environment in substantial amounts (14%), where is open around the buildings and residential areas, and the soil is considered to be due to the construction. But the data point to the highway in the distance, where is 9% of contamination of all vehicles’ smoke, and exhaust is similar to the data collected in Ulaanbaatar. According to analysis of samples of Nuclear Research Center (NRC) sampling site 2, it shows burning source of Particulate Matter 2.5 pollution in the air is around 25.5% of household waste furnace to create high-temperature product of combustion. But here the very high net contribution to the pollution of soil, is 31.6%. Today’s emerging dust is around 15.2%, showing that motor vehicle pollution causes 19.7%. Since the analysis was done on a sample-by-sample basis, it is possible to estimate the daily contributions of pollution sources and provide useful information based on a limited number of samples in order to address air quality management issues in Ulaanbaatar.展开更多
Indoor Air Quality(IAQ)has been an area of growing concern with the increasing knowledge of health hazards associated with contaminants,particularly in high occupancy buildings where residents may be exposed to high l...Indoor Air Quality(IAQ)has been an area of growing concern with the increasing knowledge of health hazards associated with contaminants,particularly in high occupancy buildings where residents may be exposed to high levels of nuisance dust and other contaminants.Leadership and Energy in Environmental Design(LEED®)certification,which is awarded to buildings that prioritize sustainability and efficient resource use,has been increasingly sought in new construction.As LEED-certified buildings become more commonplace,it is worthwhile to consider whether these new building practices improve IAQ for its occupants.This study compares particulate matter(PM)concentrations in 12 LEED-certified buildings to 12 analogous non-LEED certified buildings on the University of Utah campus.Real-time air sampling was conducted in each building for PM measurements and a Wilcoxon signed rank test was conducted to compare PM levels.A statistically significant difference was found between LEED certification and PM concentrations,with LEED-certified buildings containing,on average,approximately half the PM of their non-LEED counterparts.These findings suggest that LEED certification is worth the financial investment,as it may lead to improved IAQ for residents.However,further research on other contaminants is warranted,including the characterization and comparison of formaldehyde and carbon dioxide levels.展开更多
The precise measurement of non-volatile Particulate Matter(nvPM)is outlined in aviation engine emissions regulations by the International Civil Aviation Organization(ICAO).However,assessing particle losses in the samp...The precise measurement of non-volatile Particulate Matter(nvPM)is outlined in aviation engine emissions regulations by the International Civil Aviation Organization(ICAO).However,assessing particle losses in the sampling and transfer unit presents challenges,raising concerns about the system's reliability.Moreover,nvPM emissions from small and medium aircraft engines,with thrust not exceeding 26.7 kN,vary widely in size,adding complexity to the measurement process.To provide a comprehensive analysis of particle losses in the sampling and transfer subsystems,this study established a test bench equipped with a nanoparticle generator.The generator simulates nvPM emissions from medium and small aircraft engines and can consistently produce nvPMs with a wide range of concentrations(103–107/cm^(3))and size distributions(20–160 nm).Thermophoretic loss verification experiments were conducted within the sampling pipeline under significant temperature differences,investigating the effects of particle size,temperature gradient,and airflow rate on thermophoretic particle losses.The experimental results demonstrated good agreement with the predictions of the model proposed by United Technologies Research Centre(UTRC).After correcting for temperature,the experimental data showed a maximum disparity of 2%under typical engine exhaust conditions,validating the predictability of the thermophoretic loss model for various engine types.Furthermore,verification experiments for particle diffusion and bending losses were performed.Comparative analysis with the UTRC model revealed nvPM inertial deposition under laminar flow conditions with low Reynolds numbers(Re).As the Re increased,the measured data more closely aligned with the simulations.Bending losses due to secondary flow patterns ranged from 1%to 10%,depending on particle size and flow rate.This finding supports the applicability of aviation nvPM measurement methods across a wide particle size range.This research provides theoretical support for future nvPM measurements on various aircraft engines,laying the groundwork for improved accuracy and reliability in emissions monitoring.展开更多
The Weather Research and Forecasting model coupled with Chemistry(WRF-Chem),a type of online coupled chemistry-meteorology model(CCMM),considers the interaction between air quality and meteorology to improve air quali...The Weather Research and Forecasting model coupled with Chemistry(WRF-Chem),a type of online coupled chemistry-meteorology model(CCMM),considers the interaction between air quality and meteorology to improve air quality forecasting.Meteorological data assimilation(DA)can be used to reduce uncertainty in meteorological field,which is one factor causing prediction uncertainty in the CCMM.In this study,WRF-Chem and three-dimensional variational DA were used to examine the impact of meteorological DA on air quality and meteorological forecasts over the Korean Peninsula.The nesting model domains were configured over East Asia(outer domain)and the Korean Peninsula(inner domain).Three experiments were conducted by using different DA domains to determine the optimal model domain for the meteorological DA.When the meteorological DA was performed in the outer domain or both the outer and inner domains,the root-mean-square error(RMSE),bias of the predicted particulate matter(PM)concentrations,and the RMSE of predicted meteorological variables against the observations were smaller than those in the experiment where the meteorological DA was performed only in the inner domain.This indicates that the improvement of the synoptic meteorological fields by DA in the outer domain enhanced the meteorological initial and boundary conditions for the inner domain,subsequently improving air quality and meteorological predictions.Compared to the experiment without meteorological DA,the RMSE and bias of the meteorological and PM variables were smaller in the experiments with DA.The effect of meteorological DA on the improvement of PM predictions lasted for approximately 58-66 h,depending on the case.Therefore,the uncertainty reduction in the meteorological initial condition by the meteorological DA contributed to a reduction of the forecast errors of both meteorology and air quality.展开更多
This study investigated the particulate matter(PM)and metals in highway dry deposition and rainfallrunoff as a function of hydrologic transport and settling on an event basis.Events were differentiated as mass-limited...This study investigated the particulate matter(PM)and metals in highway dry deposition and rainfallrunoff as a function of hydrologic transport and settling on an event basis.Events were differentiated as mass-limited(ML)and flow-limited(FL).Results indicate that unique and separate suspended sediment concentration(SSC)relationships with turbidity occurred for ML and FL events.Sixty minutes of quiescent settling produced a single SSC-turbidity relationship for all events.ML events transport higher proportions of settleable and sediment PM while FL events transported relatively higher suspended PM.For batch clarification with one hour of settling,ML events had generally higher treatment efficiencies compared to FL events for the same settling conditions.Highway dry deposition PM was hetero-disperse and coarse(d50 m=304µm).Results indicate that the acidic rainfall is not a significant contributor to metals in runoff but is capable of leaching metals from dry deposition PM into runoff.Partitioning in retained runoff resulted in a particulate-bound predominance for most metals except Ca and Mg.While the finer fraction of dry deposition PM(<75µm)generates the highest metal concentrations,the highest metal mass is associated with the coarser fraction(>75µm).展开更多
基金supported by Natural Science Foundation of China (Nos. 41175017,41175140)Public Service sectors (meteorology) research and special funds by the Ministry of Science and Technology (Nos.GYHY201006012,GYHY201106025)
文摘During the course of a major sandstorm from April 17 to April 23, 2008 in the Taklimakan Desert, data pertaining to the mass concentrations of different-sized atmospheric particulate matter were observed continuously with Grimm 1.108, Thermo RP 1400a, TSP, and CAWS-600 instruments. The results showed that: (1) during the entire sandstorm process there were some dif- ferences between the daily mean particle concentration peaks and the hourly mean particle concentration peaks because the actual sandstorm lasted for only about 4 hr, whereas more particles were accumulated in the floating dust days before and after the actual sandstorm; (2) the intensity of the sandstorm was enhanced with the increase of wind speed, and this was related to the peak mass concentrations of atmospheric particulate matter; the wind speed directly affected the concentration of atmospheric particulate matter: the higher the wind speed, the higher the mass concentration (〉0.23 μm was 39,496.5 μg/m^3, and 〉20.0 μm was 5,390.7μg/m^3); (3) the concentration changes of PM10 and TSP were also related to the course and intensity of the sandstorm; and (4) the mass concentration of atmospheric particulate matter had the following sequence during the dust weather: clear day 〈 floating dust 〈 floating and blowing dust 〈 sandstorm. Temperature, relative humidity, and barometric pressure are important factors affecting the strength of storms, which could also indirectly affect the concentration change of atmospheric particulate matter.
文摘Incineration is an effective way of health care waste management, but it is also a source of air pollution. Thermal decomposition of organic and inorganic waste during incineration releases a large concentration of air pollutants such as CO, SO<sub>2</sub>, NOx, CO<sub>2</sub> and particulate matter (PM). A cross sectional-descriptive study was conducted to determine the short-term variations in PM concentrations across various areas in the vicinity of a local incinerator in Windhoek, Namibia. XRF Qualitative analysis method was used to determine the elemental composition of fallout dust concentration from six study areas/stations in the vicinity of a local incinerator. Single bucket fallout monitors were deployed following the American Society for Testing and Materials standard method for collection and analysis of dust fallout to determine the elemental composition of fallout dust. Real-time PM concentration trends were also recorded using a portable Micro dust Pro Real-time Dust Monitor for PM10 at a height of 2.2 m above the ground. High PM concentration peaks were observed in the morning and afternoon hours at varying points. The fallout dust rate ranged between highest 1839.3 mg/m2/day at sampling Point 4 and lowest 711 mg/m2/day at sampling Point 2. The XRF analysis revealed the presence of toxic elements and crustal elements in order of decreasing abundance: Mn > Zn > Cr > V > Zr > Sr > Pb > Ni and SI > K > Fe > Ti > Ca > Al > P respectively. Highest elemental composition concentrations were found at sampling location in the vicinity of the incinerator and in industrial area.
文摘Indoor air quality has a direct impact on human health. Indoor air quality has aroused great concern. This experimental study compares the effects of different water humidification on the indoor particulate pollution characteristics, and analyzes the mass concentration and the particulate number concentration distribution of different sizes of particulates with time under each condition of the purified water humidification, the tap water humidification and the cold boiled water humidification in the office. The results show that under the three kinds of wetting conditions, the concentration of the fine particulates is higher. More minerals are contained in the tap water and the cold boiled water, so the two kinds of humidification have more significant impact on indoor particulate matter. But the purified water humidification has nearly no significant effect on it. The calcium and magnesium ionic compounds are partly removed after the water boiled, so the cold boiled water humidification has less impact on the indoor particulate matter than the tap water humidification. The mass concentration and particulate number concentration of the particle may also be affected due to the frequency of ultrasonic vibration.
基金Under the auspices of Chinese National Funding of Social Sciences (No.17AGL005)Institute of Socialism with Chinese Characteristics of Southeast University (No.DDZTZK2021C11)。
文摘This study constructs a quasi-natural experiment based on the expansion of the Yangtze River Delta urban agglomeration(YRDUA) of China in 2010 to investigate the impact and inner mechanism of urban agglomeration expansion on fine particulate matter(PM_(2.5)) concentrations through propensity scores in difference-in-differences models(PSM-DID) using panel data from 286 prefecturelevel cities in China from 2003 to 2016. The results show that 1) urban agglomeration expansion contributes to an overall decrease in PM_(2.5)concentration, which is mainly achieved from the original cities. For the new cities, on the other hand, the expansion significantly increases the local PM_(2.5)concentration. 2) In the long term, the significant influence of urban agglomeration expansion on PM_(2.5)concentration lasts for three years and gradually decreases. A series of robustness tests confirm the applicability of the PSM-DID model.3) Cities with weaker government regulation, a better educated population and higher per capita income present stronger PM_(2.5)reduction effects. 4) Urban agglomeration expansion affects the PM_(2.5)concentration mainly through industrial transfer and population migration, which cause a decrease in the PM_(2.5)concentration in the original cities and an increase in the PM_(2.5)concentration in the new cities.Corresponding policy suggestions are proposed based on the conclusions.
文摘Magnetic plant biomonitoring has been proven to be an effective tool in the assessment of air quality. Kuwait presents a unique environment due to its dry desert climatic conditions and prevailing dry deposition patterns that may affect accumulation rates of magnetic mineral particles. This study evaluated two widely distributed ornamental species, buttonwood (Conocarpus erectus) and palm (Phoenix dactylifera) for their effectiveness as biomagnetic monitors over three different land use classes (urban, suburban and industrial land classes). The differences between land use classes were classified by their proximity to major pollution sources as well as population density. Leaf sampling was conducted over various heights and distances from the nearest road. Total leaf saturated isothermal magnetization (SIRM), hard isothermal magnetization (HIRM), hard isothermal magnetization percentage (HIRM%) and s-ratio have been measured. Scanning electron microscopy (SEM) was used to analyze leaf surface micromorphology. It was determined that NRM values are similar for all land use classes and species, ranging from 0.3 to 0.5 μA. Palm leaf overall magnetic concentration was identified to be higher at the industrial land use class than at the urban land use class, indicating high coercivity minerals to magnetically dominate the land use classes. Additionally, total leaf SIRM was determined to be higher at short distances of 0 - 5 meters from the vicinity of the road. The surface rugosity of palm has deep ridges and furrows with ununiform wax projections across the leaf surface, while buttonwood has a smooth wax film with low relief. Differences in leaf micromorphology in addition to plant physiology, justify species magnetic parametric variances. Palm leaf had an average SIRM value that is 120% higher than buttonwood. It has been highlighted that through the application of the magnetic parameter results to spatial distribution maps that there is an association between particulate matter (PM) and the locality of main roads and local services that may experience higher intensities of traffic.
文摘This study focused on the contents of the air particulate matter pollution in two districts of Ulaanbaatar and determined the chemical composition of air borne samples and the source of those particles. Samples of fine and coarse fractions of PM were collected using a “Gent” stacked filter unit in two fractions of 0 - 2.2 μm and 2.2 - 10 μm sizes in two semi-residential areas from September 2012 to August 2013. This paper points out that fine and coarse concentration varied seasonally with meteorological changes. In sampling site 3, Zuun Ail (Figure 1) combustion generators generate the majority of pollution around 50.6% of household waste furnace to create high-temperature combustion of 21.6%. However, this net contributes to soil contamination near the lower value (5%) that arises around the vacuum environment in substantial amounts (14%), where is open around the buildings and residential areas, and the soil is considered to be due to the construction. But the data point to the highway in the distance, where is 9% of contamination of all vehicles’ smoke, and exhaust is similar to the data collected in Ulaanbaatar. According to analysis of samples of Nuclear Research Center (NRC) sampling site 2, it shows burning source of Particulate Matter 2.5 pollution in the air is around 25.5% of household waste furnace to create high-temperature product of combustion. But here the very high net contribution to the pollution of soil, is 31.6%. Today’s emerging dust is around 15.2%, showing that motor vehicle pollution causes 19.7%. Since the analysis was done on a sample-by-sample basis, it is possible to estimate the daily contributions of pollution sources and provide useful information based on a limited number of samples in order to address air quality management issues in Ulaanbaatar.
文摘Indoor Air Quality(IAQ)has been an area of growing concern with the increasing knowledge of health hazards associated with contaminants,particularly in high occupancy buildings where residents may be exposed to high levels of nuisance dust and other contaminants.Leadership and Energy in Environmental Design(LEED®)certification,which is awarded to buildings that prioritize sustainability and efficient resource use,has been increasingly sought in new construction.As LEED-certified buildings become more commonplace,it is worthwhile to consider whether these new building practices improve IAQ for its occupants.This study compares particulate matter(PM)concentrations in 12 LEED-certified buildings to 12 analogous non-LEED certified buildings on the University of Utah campus.Real-time air sampling was conducted in each building for PM measurements and a Wilcoxon signed rank test was conducted to compare PM levels.A statistically significant difference was found between LEED certification and PM concentrations,with LEED-certified buildings containing,on average,approximately half the PM of their non-LEED counterparts.These findings suggest that LEED certification is worth the financial investment,as it may lead to improved IAQ for residents.However,further research on other contaminants is warranted,including the characterization and comparison of formaldehyde and carbon dioxide levels.
基金funded by the National Natural Science Foundation of China (grant Nos.52206131 and U2333217)National Key R&D Program of China (grant No.2022YFB2602000)Zhejiang Provincial Natural Science Foundation of China (grant No.LQ22E060004).
文摘The precise measurement of non-volatile Particulate Matter(nvPM)is outlined in aviation engine emissions regulations by the International Civil Aviation Organization(ICAO).However,assessing particle losses in the sampling and transfer unit presents challenges,raising concerns about the system's reliability.Moreover,nvPM emissions from small and medium aircraft engines,with thrust not exceeding 26.7 kN,vary widely in size,adding complexity to the measurement process.To provide a comprehensive analysis of particle losses in the sampling and transfer subsystems,this study established a test bench equipped with a nanoparticle generator.The generator simulates nvPM emissions from medium and small aircraft engines and can consistently produce nvPMs with a wide range of concentrations(103–107/cm^(3))and size distributions(20–160 nm).Thermophoretic loss verification experiments were conducted within the sampling pipeline under significant temperature differences,investigating the effects of particle size,temperature gradient,and airflow rate on thermophoretic particle losses.The experimental results demonstrated good agreement with the predictions of the model proposed by United Technologies Research Centre(UTRC).After correcting for temperature,the experimental data showed a maximum disparity of 2%under typical engine exhaust conditions,validating the predictability of the thermophoretic loss model for various engine types.Furthermore,verification experiments for particle diffusion and bending losses were performed.Comparative analysis with the UTRC model revealed nvPM inertial deposition under laminar flow conditions with low Reynolds numbers(Re).As the Re increased,the measured data more closely aligned with the simulations.Bending losses due to secondary flow patterns ranged from 1%to 10%,depending on particle size and flow rate.This finding supports the applicability of aviation nvPM measurement methods across a wide particle size range.This research provides theoretical support for future nvPM measurements on various aircraft engines,laying the groundwork for improved accuracy and reliability in emissions monitoring.
基金Supported by the National Research Foundation of Korea(2021R1A2C1012572)funded by the South Korean government(Ministry of Science and ICT)Yonsei Signature Research Cluster Program of 2023(2023-22-0009)National Institute of Environmental Research(NIER-2022-01-02-076)funded by the Ministry of Environment(MOE)of the Republic of Korea。
文摘The Weather Research and Forecasting model coupled with Chemistry(WRF-Chem),a type of online coupled chemistry-meteorology model(CCMM),considers the interaction between air quality and meteorology to improve air quality forecasting.Meteorological data assimilation(DA)can be used to reduce uncertainty in meteorological field,which is one factor causing prediction uncertainty in the CCMM.In this study,WRF-Chem and three-dimensional variational DA were used to examine the impact of meteorological DA on air quality and meteorological forecasts over the Korean Peninsula.The nesting model domains were configured over East Asia(outer domain)and the Korean Peninsula(inner domain).Three experiments were conducted by using different DA domains to determine the optimal model domain for the meteorological DA.When the meteorological DA was performed in the outer domain or both the outer and inner domains,the root-mean-square error(RMSE),bias of the predicted particulate matter(PM)concentrations,and the RMSE of predicted meteorological variables against the observations were smaller than those in the experiment where the meteorological DA was performed only in the inner domain.This indicates that the improvement of the synoptic meteorological fields by DA in the outer domain enhanced the meteorological initial and boundary conditions for the inner domain,subsequently improving air quality and meteorological predictions.Compared to the experiment without meteorological DA,the RMSE and bias of the meteorological and PM variables were smaller in the experiments with DA.The effect of meteorological DA on the improvement of PM predictions lasted for approximately 58-66 h,depending on the case.Therefore,the uncertainty reduction in the meteorological initial condition by the meteorological DA contributed to a reduction of the forecast errors of both meteorology and air quality.
文摘This study investigated the particulate matter(PM)and metals in highway dry deposition and rainfallrunoff as a function of hydrologic transport and settling on an event basis.Events were differentiated as mass-limited(ML)and flow-limited(FL).Results indicate that unique and separate suspended sediment concentration(SSC)relationships with turbidity occurred for ML and FL events.Sixty minutes of quiescent settling produced a single SSC-turbidity relationship for all events.ML events transport higher proportions of settleable and sediment PM while FL events transported relatively higher suspended PM.For batch clarification with one hour of settling,ML events had generally higher treatment efficiencies compared to FL events for the same settling conditions.Highway dry deposition PM was hetero-disperse and coarse(d50 m=304µm).Results indicate that the acidic rainfall is not a significant contributor to metals in runoff but is capable of leaching metals from dry deposition PM into runoff.Partitioning in retained runoff resulted in a particulate-bound predominance for most metals except Ca and Mg.While the finer fraction of dry deposition PM(<75µm)generates the highest metal concentrations,the highest metal mass is associated with the coarser fraction(>75µm).