【目的】农业景观是区域内自然环境和生产活动的客观呈现,具有地域性和多样性,在快速城市化背景下,评估农业景观特征可为农业景观管理及保护提供重要基础。【方法】应用景观特征评估(landscape character assessment,LCA)对珠江三角洲...【目的】农业景观是区域内自然环境和生产活动的客观呈现,具有地域性和多样性,在快速城市化背景下,评估农业景观特征可为农业景观管理及保护提供重要基础。【方法】应用景观特征评估(landscape character assessment,LCA)对珠江三角洲冲积区农业景观进行景观特征分类,选择地理演变分区、土地覆盖类型、土地利用现状等作为特征叠加要素。【结果】通过GIS分析和人工辅助修正,划分出6类一级、14类二级农业景观特征类型,并绘制出区域尺度的农业景观特征地图;同时对特征类型进行了属性归纳和类型学分类,总结出3类农业景观:基塘农业景观、田园农业景观、花卉苗木农业景观,并进行典型样本(5 km×5 km)图解与特征描述。【结论】明确了堤围及堤围所划分的水系结构和土地边界是该地区农业景观的关键特征,并针对不同类型的农业景观,分别提出保护、更新、维持的管理策略。展开更多
In this paper, a new definition on harmonious dissipative operators is given and some important properties of theirs are shown. Especially, the relationship between a harmonious dissipative operator and the completely...In this paper, a new definition on harmonious dissipative operators is given and some important properties of theirs are shown. Especially, the relationship between a harmonious dissipative operator and the completely square conservative difference scheme in an explicit way is revealed. Kinds of 2-order, 3-order and 4-order harmonious dissipative operators are constructed by using the traditional Runge-Kutta method and a species of general m-order harmonious dissipative operators is established in the linear case. In addition, an efficiency parameter to appraise the time benefits of a harmonious dissipative operator is defined in this paper. It is testified in numerical tests that the harmonious dissipative operators are indeed able to improve the time-efficiency and computational effect of the completely square conservative difference scheme in an explicit way.展开更多
文摘【目的】农业景观是区域内自然环境和生产活动的客观呈现,具有地域性和多样性,在快速城市化背景下,评估农业景观特征可为农业景观管理及保护提供重要基础。【方法】应用景观特征评估(landscape character assessment,LCA)对珠江三角洲冲积区农业景观进行景观特征分类,选择地理演变分区、土地覆盖类型、土地利用现状等作为特征叠加要素。【结果】通过GIS分析和人工辅助修正,划分出6类一级、14类二级农业景观特征类型,并绘制出区域尺度的农业景观特征地图;同时对特征类型进行了属性归纳和类型学分类,总结出3类农业景观:基塘农业景观、田园农业景观、花卉苗木农业景观,并进行典型样本(5 km×5 km)图解与特征描述。【结论】明确了堤围及堤围所划分的水系结构和土地边界是该地区农业景观的关键特征,并针对不同类型的农业景观,分别提出保护、更新、维持的管理策略。
基金Project partly supported by the State Key Project for Basic Researches.
文摘In this paper, a new definition on harmonious dissipative operators is given and some important properties of theirs are shown. Especially, the relationship between a harmonious dissipative operator and the completely square conservative difference scheme in an explicit way is revealed. Kinds of 2-order, 3-order and 4-order harmonious dissipative operators are constructed by using the traditional Runge-Kutta method and a species of general m-order harmonious dissipative operators is established in the linear case. In addition, an efficiency parameter to appraise the time benefits of a harmonious dissipative operator is defined in this paper. It is testified in numerical tests that the harmonious dissipative operators are indeed able to improve the time-efficiency and computational effect of the completely square conservative difference scheme in an explicit way.