A new thermodynamic expression for Gibbs free energy difference AG between the under-cooled liquid and the corresponding crystals of bulk metallic glasses was derived. The newly proposed expression always gives result...A new thermodynamic expression for Gibbs free energy difference AG between the under-cooled liquid and the corresponding crystals of bulk metallic glasses was derived. The newly proposed expression always gives results in fairly good agreement with experimental values over entire temperature range between the fusion temperature Tm and the glass transition temperature Tg of Pd40Ni40P20, Pd40Cu30Ni10P20 and Pd43Cu27Ni10P20, which possess different heat capacities. However, the TS and KN expressions cannot always provide results in good agreement with the experimental values. In addition, the deviations between the experimental values and the AG calculated by the proposed expression at Tg are smaller than those given by other expressions for all the bulk metallic glasses studied.展开更多
This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimat...This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimate of the ratio of the respective free energies of systems with and without A show that the system variables given by Gibbs suffice to describe the volumetric properties of the fluid. The well-known Gibbsian expressions for the internal energies of the two-phase fluid, namely for the vapor and for the condensate (liquid or solid), only differ with respect to the phase-specific volumes and . The saturation temperature T, vapor presssure p, and chemical potential are intensive parameters, each of which has the same value everywhere within the fluid, and hence are phase-independent quantities. If one succeeds in representing as a function of and , then the internal energies can also be described by expressions that only differ from one another with respect to their dependence on and . Here it is shown that can be uniquely expressed by the volume function . Therefore, the internal energies can be represented explicitly as functions of the vapor pressure and volumes of the saturated vapor and condensate and are absolutely determined. The hitherto existing problem of applied thermodynamics, calculating the internal energy from the measurable quantities T, p, , and , is thus solved. The same method applies to the calculation of the entropy, chemical potential, and heat capacity.展开更多
The effects of microalloying of Ti and B on the glass formation of Cu60Pr30Ni10Al10-2xTixBx(x = 0, 0.05% (atom fraction)) amorphous alloys was investigated using differential scanning calorimetry (DSC) and X-ray...The effects of microalloying of Ti and B on the glass formation of Cu60Pr30Ni10Al10-2xTixBx(x = 0, 0.05% (atom fraction)) amorphous alloys was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). XRD analysis showed that mieroalloying with 0.05% Ti and 0.05% B improved the glass forming ability (GFA). The smaller difference in the Gibbs free energy between the liquid and crystalline states at the glass transition temperature (△G1-X(Tg)) and the smaller thermodynamic fragility index (△Sf/Tm, where ASf is the entropy of fusion, and Tm is the melting temperature) after mieroalloying correlated with the higher GFA.展开更多
In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arre...In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.展开更多
根据热力学理论推导出了可以用于估计La基(如La55Cu15Ni5Al25,La55Cu10Ni5Al25Co5,La55Al25Ni20 and La55Cu10Ni10Al25)非晶合金固液自由能差的表达式。当La55Cu15Ni5Al25、La55Cu10Ni5Al25Co5、La55Al25Ni20和La55Cu10Ni10Al25的α值...根据热力学理论推导出了可以用于估计La基(如La55Cu15Ni5Al25,La55Cu10Ni5Al25Co5,La55Al25Ni20 and La55Cu10Ni10Al25)非晶合金固液自由能差的表达式。当La55Cu15Ni5Al25、La55Cu10Ni5Al25Co5、La55Al25Ni20和La55Cu10Ni10Al25的α值分别为0.52、0.3、0.2和0.15时,这个表达式给出的理论结果在很大的过冷区间几乎与实验测定结果重合,远远优于其它表达式给出的结果,并且其重合的最低温度可以分别达到350K(La55Al25Ni20)、450K(La55Cu10Ni5Al25Co5)、370K (La55Cu10Ni10Al25)和200K(La55Cu15Ni5Al25);另一方面,提出了用于估计非晶合金的库兹曼温度TA的表达式,即TA=Tmexp(α-1),发现此表达示估计的TA与通过实验数据计算出的吻合得很好。展开更多
基金Acknowledgement The project was supported by Scientific Research Fund of Hunan Provincial Education Department (06B038) and Postdoctoral Science Foundation of Central South University.
文摘A new thermodynamic expression for Gibbs free energy difference AG between the under-cooled liquid and the corresponding crystals of bulk metallic glasses was derived. The newly proposed expression always gives results in fairly good agreement with experimental values over entire temperature range between the fusion temperature Tm and the glass transition temperature Tg of Pd40Ni40P20, Pd40Cu30Ni10P20 and Pd43Cu27Ni10P20, which possess different heat capacities. However, the TS and KN expressions cannot always provide results in good agreement with the experimental values. In addition, the deviations between the experimental values and the AG calculated by the proposed expression at Tg are smaller than those given by other expressions for all the bulk metallic glasses studied.
文摘This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimate of the ratio of the respective free energies of systems with and without A show that the system variables given by Gibbs suffice to describe the volumetric properties of the fluid. The well-known Gibbsian expressions for the internal energies of the two-phase fluid, namely for the vapor and for the condensate (liquid or solid), only differ with respect to the phase-specific volumes and . The saturation temperature T, vapor presssure p, and chemical potential are intensive parameters, each of which has the same value everywhere within the fluid, and hence are phase-independent quantities. If one succeeds in representing as a function of and , then the internal energies can also be described by expressions that only differ from one another with respect to their dependence on and . Here it is shown that can be uniquely expressed by the volume function . Therefore, the internal energies can be represented explicitly as functions of the vapor pressure and volumes of the saturated vapor and condensate and are absolutely determined. The hitherto existing problem of applied thermodynamics, calculating the internal energy from the measurable quantities T, p, , and , is thus solved. The same method applies to the calculation of the entropy, chemical potential, and heat capacity.
基金Project supported by the National Natural Science Foundation of China (50471052)Natural Science Foundation of Shandong Province (Z2004F02)
文摘The effects of microalloying of Ti and B on the glass formation of Cu60Pr30Ni10Al10-2xTixBx(x = 0, 0.05% (atom fraction)) amorphous alloys was investigated using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). XRD analysis showed that mieroalloying with 0.05% Ti and 0.05% B improved the glass forming ability (GFA). The smaller difference in the Gibbs free energy between the liquid and crystalline states at the glass transition temperature (△G1-X(Tg)) and the smaller thermodynamic fragility index (△Sf/Tm, where ASf is the entropy of fusion, and Tm is the melting temperature) after mieroalloying correlated with the higher GFA.
文摘In this technical paper, the oxidation mechanism and kinetics of aluminum powders are discussed in great details. The potential applications of spherical aluminum powders after oxidation to be part of the surging arresting materials are discussed. Theoretical calculations of oxidation of spherical aluminum powders in a typical gas fluidization bed are demonstrated. Computer software written by the author is used to carry out the basic calculations of important parameters of a gas fluidization bed at different temperatures. A mathematical model of the dynamic system in a gas fluidization bed is developed and the analytical solution is obtained. The mathematical model can be used to estimate aluminum oxide thickness at a defined temperature. The mathematical model created in this study is evaluated and confirmed consistently with the experimental results on a gas fluidization bed. Detail technical discussion of the oxidation mechanism of aluminum is carried out. The mathematical deviations of the mathematical modeling have demonstrated in great details. This mathematical model developed in this study and validated with experimental results can bring a great value for the quantitative analysis of a gas fluidization bed in general from a theoretical point of view. It can be applied for the oxidation not only for aluminum spherical powders, but also for other spherical metal powders. The mathematical model developed can further enhance the applications of gas fluidization technology. In addition to the development of mathematical modeling of a gas fluidization bed reactor, the formation of oxide film through diffusion on both planar and spherical aluminum surfaces is analyzed through a thorough mathematical deviation using diffusion theory and Laplace transformation. The dominant defects and their impact to oxidation of aluminum are also discussed in detail. The well-controlled oxidation film on spherical metal powders such as aluminum and other metal spherical powders can potentially become an important part of switch devices of surge arresting materials, in general.
文摘根据热力学理论推导出了可以用于估计La基(如La55Cu15Ni5Al25,La55Cu10Ni5Al25Co5,La55Al25Ni20 and La55Cu10Ni10Al25)非晶合金固液自由能差的表达式。当La55Cu15Ni5Al25、La55Cu10Ni5Al25Co5、La55Al25Ni20和La55Cu10Ni10Al25的α值分别为0.52、0.3、0.2和0.15时,这个表达式给出的理论结果在很大的过冷区间几乎与实验测定结果重合,远远优于其它表达式给出的结果,并且其重合的最低温度可以分别达到350K(La55Al25Ni20)、450K(La55Cu10Ni5Al25Co5)、370K (La55Cu10Ni10Al25)和200K(La55Cu15Ni5Al25);另一方面,提出了用于估计非晶合金的库兹曼温度TA的表达式,即TA=Tmexp(α-1),发现此表达示估计的TA与通过实验数据计算出的吻合得很好。